Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/137704
Title: | Molecular-barrier-enhanced aromatic fluorophores in cocrystals with unity quantum efficiency | Authors: | Ye, Huanqing Liu, Guangfeng Liu, Sheng Casanova, David Ye, Xin Tao, Xutang Zhang, Qichun Xiong, Qihua |
Keywords: | Science::Chemistry | Issue Date: | 2018 | Source: | Ye, H., Liu, G., Liu, S., Casanova, D., Ye, X., Tao, X., . . . Xiong, Q. (2018). Molecular-barrier-enhanced aromatic fluorophores in cocrystals with unity quantum efficiency. Angewandte Chemie International Edition, 57(7), 1928-1932. doi:10.1002/anie.201712104 | Journal: | Angewandte Chemie International Edition | Abstract: | Singlet–triplet conversion in organic light‐emitting materials introduces non‐emissive (dark) and long‐lived triplet states, which represents a significant challenge in constraining the optical properties. There have been considerable attempts at separating singlets and triplets in long‐chain polymers, scavenging triplets, and quenching triplets with heavy metals; nonetheless, such triplet‐induced loss cannot be fully eliminated. Herein, a new strategy of crafting a periodic molecular barrier into the π‐conjugated matrices of organic aromatic fluorophores is reported. The molecular barriers effectively block the singlet‐to‐triplet pathway, resulting in near‐unity photoluminescence quantum efficiency (PLQE) of the organic fluorophores. The transient optical spectroscopy measurements confirm the absence of the triplet absorption. These studies provide a general approach to preventing the formation of dark triplet states in organic semiconductors and bring new opportunities for the development of advanced organic optics and photonics. | URI: | https://hdl.handle.net/10356/137704 | ISSN: | 1433-7851 | DOI: | 10.1002/anie.201712104 | Schools: | School of Electrical and Electronic Engineering School of Materials Science & Engineering School of Physical and Mathematical Sciences |
Organisations: | NOVITAS, Nanoelectronics Center of Excellence MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit UMI 3654 |
Rights: | © 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | SPMS Journal Articles |
SCOPUSTM
Citations
5
109
Updated on Mar 16, 2025
Web of ScienceTM
Citations
5
91
Updated on Oct 30, 2023
Page view(s) 50
568
Updated on Mar 26, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.