Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/137788
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWan, Changjinen_US
dc.contributor.authorChen, Gengen_US
dc.contributor.authorFu, Yangmingen_US
dc.contributor.authorWang, Mingen_US
dc.contributor.authorMatsuhisa, Naojien_US
dc.contributor.authorPan, Shaowuen_US
dc.contributor.authorPan, Liangen_US
dc.contributor.authorYang, Huien_US
dc.contributor.authorWan, Qingen_US
dc.contributor.authorZhu, Liqiangen_US
dc.contributor.authorChen, Xiaodongen_US
dc.date.accessioned2020-04-15T02:10:13Z-
dc.date.available2020-04-15T02:10:13Z-
dc.date.issued2018-
dc.identifier.citationWan, C., Chen, G., Fu, Y., Wang, M., Matsuhisa, N., Pan, S., . . ., Chen, X. (2018). An artificial sensory neuron with tactile perceptual learning. Advanced materials, 30(30), 1801291-. doi:10.1002/adma.201801291en_US
dc.identifier.issn0935-9648en_US
dc.identifier.urihttps://hdl.handle.net/10356/137788-
dc.description.abstractSensory neurons within skin form an interface between the external physical reality and the inner tactile perception. This interface enables sensory information to be organized identified, and interpreted through perceptual learning-the process whereby the sensing abilities improve through experience. Here, an artificial sensory neuron that can integrate and differentiate the spatiotemporal features of touched patterns for recognition is shown. The system comprises sensing, transmitting, and processing components that are parallel to those found in a sensory neuron. A resistive pressure sensor converts pressure stimuli into electric signals, which are transmitted to a synaptic transistor through interfacial ionic/electronic coupling via a soft ionic conductor. Furthermore, the recognition error rate can be dramatically decreased from 44% to 0.4% by integrating with the machine learning method. This work represents a step toward the design and use of neuromorphic electronic skin with artificial intelligence for robotics and prosthetics.en_US
dc.description.sponsorshipNRF (Natl Research Foundation, S’pore)en_US
dc.description.sponsorshipMOE (Min. of Education, S’pore)en_US
dc.language.isoenen_US
dc.relation.ispartofAdvanced materialsen_US
dc.rights© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved. This paper was published in Advanced materials and is made available with permission of WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.en_US
dc.subjectEngineering::Materialsen_US
dc.titleAn artificial sensory neuron with tactile perceptual learningen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Materials Science & Engineeringen_US
dc.contributor.organizationInnovative Center for Flexible Devicesen_US
dc.identifier.doi10.1002/adma.201801291-
dc.description.versionAccepted versionen_US
dc.identifier.pmid29882255-
dc.identifier.scopus2-s2.0-85050394157-
dc.identifier.issue30en_US
dc.identifier.volume30en_US
dc.subject.keywordsArtificial Intelligenceen_US
dc.subject.keywordsArtificial Neuronsen_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:MSE Journal Articles
Files in This Item:
File Description SizeFormat 
1_An Artificial Sensory.pdf749.72 kBAdobe PDFView/Open

SCOPUSTM   
Citations 1

197
Updated on Oct 1, 2022

Web of ScienceTM
Citations 1

194
Updated on Jul 6, 2022

Page view(s)

214
Updated on Oct 1, 2022

Download(s) 10

381
Updated on Oct 1, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.