Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/138008
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSong, Justin Chien Wenen_US
dc.contributor.authorGabor, Nathaniel M.en_US
dc.date.accessioned2020-04-22T00:50:36Z-
dc.date.available2020-04-22T00:50:36Z-
dc.date.issued2018-
dc.identifier.citationSong, J. C. W., & Gabor, N. M. (2018). Electron quantum metamaterials in van der Waals heterostructures. Nature Nanotechnology, 13(11), 986-993. doi:10.1038/s41565-018-0294-9en_US
dc.identifier.issn1748-3387en_US
dc.identifier.urihttps://hdl.handle.net/10356/138008-
dc.description.abstractIn recent decades, scientists have developed the means to engineer synthetic periodic arrays with feature sizes below the wavelength of light. When such features are appropriately structured, electromagnetic radiation can be manipulated in unusual ways, resulting in optical metamaterials whose function is directly controlled through nanoscale structure. Nature, too, has adopted such techniques-for example in the unique colouring of butterfly wings-to manipulate photons as they propagate through nanoscale periodic assemblies. In this Perspective, we highlight the intriguing potential of designer structuring of electronic matter at scales at and below the electron wavelength, which affords a new range of synthetic quantum metamaterials with unconventional responses. Driven by experimental developments in stacking atomically layered heterostructures-such as mechanical pick-up/transfer assembly-atomic-scale registrations and structures can be readily tuned over distances smaller than characteristic electronic length scales (such as the electron wavelength, screening length and electron mean free path). Yet electronic metamaterials promise far richer categories of behaviour than those found in conventional optical metamaterial technologies. This is because, unlike photons, which scarcely interact with each other, electrons in subwavelength-structured metamaterials are charged and strongly interact. As a result, an enormous variety of emergent phenomena can be expected and radically new classes of interacting quantum metamaterials designed.en_US
dc.description.sponsorshipNRF (Natl Research Foundation, S’pore)en_US
dc.language.isoenen_US
dc.relation.ispartofNature Nanotechnologyen_US
dc.rights© 2018 Springer Nature Limited. All rights reserved. This paper was published in Nature Nanotechnology and is made available with permission of Springer Nature Limited.en_US
dc.subjectScience::Physicsen_US
dc.titleElectron quantum metamaterials in van der Waals heterostructuresen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.contributor.organizationInstitute of High Performance Computing, A*STARen_US
dc.identifier.doi10.1038/s41565-018-0294-9-
dc.description.versionAccepted versionen_US
dc.identifier.pmid30397295-
dc.identifier.scopus2-s2.0-85056245544-
dc.identifier.issue11en_US
dc.identifier.volume13en_US
dc.identifier.spage986en_US
dc.identifier.epage993en_US
dc.subject.keywordsElectron Quantum Metamaterialen_US
dc.subject.keywordsNanotechnologyen_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:SPMS Journal Articles
Files in This Item:
File Description SizeFormat 
Electron Quantum Metamaterials in van der waals heterostructures.pdf939.16 kBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 5

94
Updated on Jul 21, 2024

Web of ScienceTM
Citations 5

79
Updated on Oct 27, 2023

Page view(s)

239
Updated on Jul 22, 2024

Download(s) 20

339
Updated on Jul 22, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.