Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/138102
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Huanwenen_US
dc.contributor.authorXu, Dongmingen_US
dc.contributor.authorJia, Guichongen_US
dc.contributor.authorMao, Zhifeien_US
dc.contributor.authorGong, Yanshengen_US
dc.contributor.authorHe, Beibeien_US
dc.contributor.authorWang, Ruien_US
dc.contributor.authorFan, Hong Jinen_US
dc.date.accessioned2020-04-24T04:02:00Z-
dc.date.available2020-04-24T04:02:00Z-
dc.date.issued2020-
dc.identifier.citationWang, H., Xu, D., Jia, G., Mao, Z., Gong, Y., He, B., . . . Fan, H. J. (2020). Integration of flexibility, cyclability and high-capacity into one electrode for sodium-ion hybrid capacitors with low self-discharge rate. Energy Storage Materials, 25, 114-123. doi:10.1016/j.ensm.2019.10.024en_US
dc.identifier.issn2405-8297en_US
dc.identifier.urihttps://hdl.handle.net/10356/138102-
dc.description.abstractMetal-ion hybrid capacitors are regarded as promising power sources for portable electronics because of numerous opportunities in designing the anode/cathode couple to realize high performance and device flexibility. Here we demonstrate our rational design of a porous-fiber network based electrode for quasi-solid-state flexible Na-ion hybrid capacitors. A SiO2-etching approach is deployed to synthesize the freestanding porous carbon nanofiber (PCNF) membrane that is both mechanically robust and light (~1 mg cm−2). The PCNF serves as a 3D scaffold for the uniform growth of MoS2@poly(3,4-ethylenedioxythiophene) (PEDOT) core/shell nanosheets. The resultant PCNF@MoS2@PEDOT double core/shell nanofiber electrode not only maintains the intrinsic high-capacity of MoS2 for Na-ion storage, but also renders long-term cyclability and high rate performance. The constructed quasi-solid-state Na-ion hybrid capacitors can tolerate arbitrary bending and folding, and has a much lower self-discharge rate (15 mV h-1) compared to symmetric capacitors.en_US
dc.language.isoenen_US
dc.relation.ispartofEnergy Storage Materialsen_US
dc.rights© 2019 Elsevier B.V. All rights reserved. All rights reserved. This paper was published in Energy Storage Materials and is made available with permission of Elsevier B.V.en_US
dc.subjectEngineering::Materialsen_US
dc.subjectScience::Chemistryen_US
dc.titleIntegration of flexibility, cyclability and high-capacity into one electrode for sodium-ion hybrid capacitors with low self-discharge rateen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.identifier.doi10.1016/j.ensm.2019.10.024-
dc.description.versionAccepted versionen_US
dc.identifier.scopus2-s2.0-85075386300-
dc.identifier.volume25en_US
dc.identifier.spage114en_US
dc.identifier.epage123en_US
dc.subject.keywordsFlexible Energy Storageen_US
dc.subject.keywordsMesoporous Carbon Fiberen_US
item.grantfulltextembargo_20221231-
item.fulltextWith Fulltext-
Appears in Collections:SPMS Journal Articles
Files in This Item:
File Description SizeFormat 
Revised manuscript for submission.pdf
  Until 2022-12-31
accepted manuscript -main part3.01 MBAdobe PDFUnder embargo until Dec 31, 2022
Revsied SI.pdf
  Until 2022-12-31
supporting information2.39 MBAdobe PDFUnder embargo until Dec 31, 2022

SCOPUSTM   
Citations 10

31
Updated on Mar 10, 2021

PublonsTM
Citations 10

26
Updated on Mar 5, 2021

Page view(s)

51
Updated on May 15, 2021

Download(s) 50

25
Updated on May 15, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.