Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/138260
Title: | Multiple consumer-grade depth camera registration using everyday objects | Authors: | Deng, Teng Cai, Jianfei Cham, Tat-Jen Zheng, Jianmin |
Keywords: | Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision | Issue Date: | 2017 | Source: | Deng, T., Cai, J., Cham, T.-J., & Zheng, J. (2017). Multiple consumer-grade depth camera registration using everyday objects. Image and Vision Computing, 62, 1-7. doi:10.1016/j.imavis.2017.03.005 | Journal: | Image and Vision Computing | Abstract: | The registration of multiple consumer-grade depth sensors is a challenging task due to noisy and systematic distortions in depth measurements. Most of the existing works heavily rely on large number of checkerboard observations for calibration and registration of multiple depth cameras, which is tedious and not flexible. In this paper, we propose a more practical method for conducting and maintaining registration of multi-depth sensors, via replacing checkerboards with everyday objects found in the scene, such as regular furniture. Particularly, high quality pre-scanned 3D shapes of standard furniture are used as calibration targets. We propose a unified framework that jointly computes the optimal extrinsic calibration and depth correction parameters. Experimental results show that our proposed method significantly outperforms state-of-the-art depth camera registration methods. | URI: | https://hdl.handle.net/10356/138260 | ISSN: | 0262-8856 | DOI: | 10.1016/j.imavis.2017.03.005 | Rights: | © 2017 Elsevier B.V. All rights reserved. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | IMI Journal Articles |
SCOPUSTM
Citations
50
4
Updated on Jan 22, 2023
Web of ScienceTM
Citations
20
6
Updated on Jan 26, 2023
Page view(s)
200
Updated on Jan 29, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.