Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/138301
Title: Ionotronic halide perovskite drift-diffusive synapses for low-power neuromorphic computation
Authors: John, Rohit Abharam
Yantara, Natalia
Ng, Yan Fong
Narasimmam, Govind
Mosconi, Edoardo
Meggiolaro,Daniele
Kulkarni, Mohit Rameshchandra
Gopalakrishnan, Pradeep Kumar
Nguyen, Chien Anh
De Angelis, Filippo
Mhaisalkar, Subodh Gautam
Basu, Arindam
Mathews, Nripan
Keywords: Engineering::Materials
Issue Date: 2018
Source: John, R. A., Yantara, N., Ng, Y. F., Narasimman, G., Mosconi, E., Meggiolaro, D., ... & Mathews, N. (2018). Ionotronic halide perovskite drift-diffusive synapses for low-power neuromorphic computation. Advanced Materials, 30(51), 1805454-. doi:10.1002/adma.201805454
Journal: Advanced Materials 
Abstract: Emulation of brain‐like signal processing is the foundation for development of efficient learning circuitry, but few devices offer the tunable conductance range necessary for mimicking spatiotemporal plasticity in biological synapses. An ionic semiconductor which couples electronic transitions with drift‐diffusive ionic kinetics would enable energy‐efficient analog‐like switching of metastable conductance states. Here, ionic–electronic coupling in halide perovskite semiconductors is utilized to create memristive synapses with a dynamic continuous transition of conductance states. Coexistence of carrier injection barriers and ion migration in the perovskite films defines the degree of synaptic plasticity, more notable for the larger organic ammonium and formamidinium cations than the inorganic cesium counterpart. Optimized pulsing schemes facilitates a balanced interplay of short‐ and long‐term plasticity rules like paired‐pulse facilitation and spike‐time‐dependent plasticity, cardinal for learning and computing. Trained as a memory array, halide perovskite synapses demonstrate reconfigurability, learning, forgetting, and fault tolerance analogous to the human brain. Network‐level simulations of unsupervised learning of handwritten digit images utilizing experimentally derived device parameters, validates the utility of these memristors for energy‐efficient neuromorphic computation, paving way for novel ionotronic neuromorphic architectures with halide perovskites as the active material.
URI: https://hdl.handle.net/10356/138301
ISSN: 0935-9648
DOI: 10.1002/adma.201805454
DOI (Related Dataset): https://doi.org/10.21979/N9/9KVOXI
Schools: School of Electrical and Electronic Engineering 
School of Materials Science & Engineering 
Research Centres: Energy Research Institute @ NTU (ERI@N) 
Rights: © 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved. This paper was published in Advanced Materials and is made available with permission of WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles

Files in This Item:
File Description SizeFormat 
Ionotronic Halide Perovskite Drift-Diffusive Synapses for Low-Power.pdf2.36 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 5

179
Updated on Mar 9, 2025

Web of ScienceTM
Citations 5

118
Updated on Oct 30, 2023

Page view(s)

382
Updated on Mar 23, 2025

Download(s) 10

549
Updated on Mar 23, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.