Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/138367
Title: | Fabrication of 3D mesoporous networks of assembled CoO nanoparticles for efficient photocatalytic reduction of aqueous Cr(VI) | Authors: | Velegraki, Georgia Miao, Jianwei Drivas, Charalampos Liu, Bin Kennou, Stella Armatas, Gerasimos S. |
Keywords: | Science::Chemistry | Issue Date: | 2017 | Source: | Velegraki, G., Miao, J., Drivas, C., Liu, B., Kennou, S., & Armatas, G. S. (2018). Fabrication of 3D mesoporous networks of assembled CoO nanoparticles for efficient photocatalytic reduction of aqueous Cr(VI). Applied Catalysis B: Environmental, 221, 635-644. doi:10.1016/j.apcatb.2017.09.064 | Journal: | Applied Catalysis B: Environmental | Abstract: | Synthesis of high-performance and cyclic stable photocatalysts has been remaining a significant challenge. In this work, we report the synthesis of high-surface-area mesoporous networks of CoO NPs through a polymer-templating self-assembly method and demonstrate their potential application in the reductive detoxification of aqueous Cr(VI) solutions under UV and visible light irradiation. Electron microscopy images and N2 adsorption measurements corroborate the presence of a porous network of interconnected CoO NPs (ca. 18 nm in size) with large internal surface area (up to 134 m2 g−1) and narrow pore-size distribution (ca. 4.4–4.8 nm in diameter). Conjunction of optical absorption and electrochemical impendence spectroscopy results indicates that the band edge positions of constituent CoO NPs meet the electric potential requirements for reducing Cr(VI) and splitting water to oxygen. We show that mesoporous assemblies of hexagonal CoO NPs effectively overcome the kinetic barriers for the oxidation reaction, manifesting a remarkably photocatalytic Cr(VI) reduction activity at acidic pH with an apparent quantum yield (AQY) of 1.61% and 0.17% at wavelengths of 375 and 440 nm, respectively. We demonstrate that, apart from oxygen evolution reaction, photoconversion of harmful Cr(VI) into non-toxic Cr(III) involves also a hydroxyl radical-mediated oxidation process by intercepting oxidation products with on-line mass spectrometry and fluorescence spectroscopy in control catalytic experiments. | URI: | https://hdl.handle.net/10356/138367 | ISSN: | 0926-3373 | DOI: | 10.1016/j.apcatb.2017.09.064 | Schools: | School of Chemical and Biomedical Engineering | Rights: | © 2017 Elsevier B.V. All rights reserved. This paper was published in Applied Catalysis B: Environmental and is made available with permission of Elsevier B.V. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | SCBE Journal Articles |
SCOPUSTM
Citations
5
89
Updated on Mar 13, 2025
Web of ScienceTM
Citations
5
78
Updated on Oct 29, 2023
Page view(s)
324
Updated on Mar 15, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.