Please use this identifier to cite or link to this item:
Title: In situ/operando characterization techniques to probe the electrochemical reactions for energy conversion
Authors: Li, Xuning
Wang, Hsin-Yi
Yang, Hongbin
Cai, Weizheng
Liu, Song
Liu, Bin
Keywords: Engineering::Chemical engineering
Issue Date: 2018
Source: Li, X., Wang, H.-Y., Yang, H., Cai, W., Liu, S., & Liu, B. (2018). In situ/operando characterization techniques to probe the electrochemical reactions for energy conversion. Small Methods, 2(6), 1700395-. doi:10.1002/smtd.201700395
Journal: Small Methods
Abstract: The water‐splitting reaction, including the hydrogen and oxygen evolution reactions, as well as the electrochemical oxygen and CO2 reduction reactions offer promising solutions to address the global energy scarcity and the associated environmental issues. However, the lack of deep insight into the reaction mechanisms and clear identification of the catalytic active sites hinder any breakthrough for the development of efficient electrocatalysts with high performance and durability. Operando characterization techniques allowing in situ monitoring the surface oxidation state and local atomic‐structure transformation are capable of probing the active sites and promoting the fundamental understanding of the reaction mechanism in these systems. Herein, the recent applications of various operando characterization techniques in identifying the active sites and capturing the geometric structure, oxidation state, and local atomic‐structure evolution of the catalysts during water electrolysis and O2/CO2 electroreduction are thoroughly summarized. The challenges and outlook in developing operando techniques to further extend the understanding of the underlying mechanism during electrochemical energy‐conversion reactions are discussed.
ISSN: 2366-9608
DOI: 10.1002/smtd.201700395
Rights: © 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCBE Journal Articles

Citations 5

Updated on Mar 5, 2021

Page view(s)

Updated on May 26, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.