Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/138538
Title: Performance of AlGaInP LEDs on silicon substrates through low threading dislocation density (TDD) germanium buffer layer
Authors: Wang, Yue
Wang, Bing
Eow, Desmond Fu Shen
Michel, Jurgen
Lee, Kenneth Eng Kian
Yoon, Soon Fatt
Fitzgerald, Eugene A.
Tan , Chuan Seng
Lee, Kwang Hong
Keywords: Engineering::Electrical and electronic engineering
Issue Date: 2018
Source: Wang, Y., Wang, B., Eow, D. F. S., Michel, J., Lee, K. E. K., Yoon, S. F., . . . Lee, K. H. (2018). Performance of AlGaInP LEDs on silicon substrates through low threading dislocation density (TDD) germanium buffer layer. Semiconductor Science and Technology, 33(10), 104004-. doi:10.1088/1361-6641/aadc27
Journal: Semiconductor Science and Technology
Abstract: Performance of GaInP/AlGaInP multi-quantum wells light-emitting diodes (LEDs) grown on low threading dislocation density (TDD) Germanium-on-Silicon (Ge/Si) substrates are compared and studied. Three approaches are used to realize the low TDD Ge/Si substrates. The first approach is the two-step growth of Ge/Si substrate with TDD of ∼5 ×107 cm-2. The second approach is through doped the Ge seed layer with arsenic (As) and TDD of <5 ×106 cm-2 can be achieved. The third approach is through wafer bonding and layer transfer techniques, germanium-on-insulator (GOI) substrate with TDD of ∼1.2 ×106 cm-2 can be fabricated. To demonstrate the quality of these Ge/Si substrates, LEDs fabricated on commercially available Ge/Si and bulk Ge substrates were also included for comparison purposes. The LEDs fabricated on the As-doped Ge/Si and GOI substrates exhibit superior performances, with output light intensity at least 2× higher compared to devices fabricated on commercially available Ge/Si substrate. These findings enable the monolithic integration of visible-band optical sources with Si-based control circuitry.
URI: https://hdl.handle.net/10356/138538
ISSN: 0268-1242
DOI: 10.1088/1361-6641/aadc27
Rights: © 2018 IOP Publishing Ltd. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:EEE Journal Articles

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.