Please use this identifier to cite or link to this item:
Title: Adaptive hydrogel substrates for stem cell culture
Authors: Kwang, Guo Dong
Keywords: Engineering::Materials::Biomaterials
Engineering::Materials::Material testing and characterization
Issue Date: 2020
Publisher: Nanyang Technological University
Abstract: Smart hydrogels are capable of mimicking dynamic ECM microenvironment to affect cell behaviour such as cellular morphology, proliferation, and differentiation. However, current smart hydrogel ECM are unable to display stiffness range (high stiffness is required for cell proliferation while low stiffness is required for secretome production) required to modulate effects of hMSCs secretome production with enhanced regenerative properties. Alginate is acknowledged for its outstanding biocompatibility, and properties such as biodegradability, non-antigenicity, and chelating ability that is widely sought after in biomedical research. The fabrication of a polyacrylamide-alginate interpenetrating network (PAAm-Alg IPN) smart hydrogel scaffold offers the potential to develop a biocompatible hydrogel which is capable of cell adhesion and proliferation at high stiffness and secretome production at low stiffness, within the required stiffness range 0.15-10kPA. Using an IPN hydrogel will allow us gain control over adhesion, proliferation and secretome production by targeting the cells’ mechanobiological response. This research hence investigated the stability and technical handling ability of Kimica IL-6G Alginate as a suitable candidate for the fabrication PAAm-Alg IPN smart hydrogel scaffold. A softening protocol developed to degrade alginate, via 0.5hr of sodium citrate treatment, was also successful in softening IPN hydrogel without compromising cell viability.
Fulltext Permission: embargo_restricted_20220506
Fulltext Availability: With Fulltext
Appears in Collections:MSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP (Report)-KwangGuoDong.pdf
  Until 2022-05-06
FYP Report: Adaptive Hydrogel Substrates for Stem Cell Culture1.66 MBAdobe PDFUnder embargo until May 06, 2022

Page view(s)

Updated on Jul 27, 2021

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.