Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/138781
Title: | Printable superelastic conductors with extreme stretchability and robust cycling endurance enabled by liquid-metal particles | Authors: | Wang, Jiangxin Cai, Guofa Li, Shaohui Gao, Dace Xiong, Jiaqing Lee, Pooi See |
Keywords: | Engineering::Materials | Issue Date: | 2018 | Source: | Wang, J., Cai, G., Li, S., Gao, D., Xiong, J., & Lee, P. S. (2018). Printable superelastic conductors with extreme stretchability and robust cycling endurance enabled by liquid-metal particles. Advanced Materials, 30(16), 1706157-. doi:10.1002/adma.201706157 | Project: | NRF-CRP-13-2014-02 NRF-NRFI2016-05 |
Journal: | Advanced Materials | Abstract: | Stretchable conductors are vital and indispensable components in soft electronic systems. The development for stretchable conductors has been highly motivated with different approaches established to address the dilemma in the conductivity and stretchability trade-offs to some extent. Here, a new strategy to achieve superelastic conductors with high conductivity and stable electrical performance under stretching is reported. It is demonstrated that by electrically anchoring conductive fillers with eutectic gallium indium particles (EGaInPs), significant improvement in stretchability and durability can be achieved in stretchable conductors. Different from the strategy of modulating the chemical interactions between the conductive fillers and host polymers, the EGaInPs provide dynamic and robust electrical anchors between the conductive fillers. A superelastic conductor which can achieve a high stretchability with 1000% strain at initial conductivity of 8331 S cm-1 and excellent cycling durability with about eight times resistance change (compared to the initial resistance at 0% strain before stretching) after reversibly stretching to 800% strain for 10 000 times is demonstrated. Applications of the superelastic conductor in an interactive soft touch device and a stretchable light-emitting system are also demonstrated, featuring its promising applications in soft robotics or soft and interactive human-machine interfaces. | URI: | https://hdl.handle.net/10356/138781 | ISSN: | 0935-9648 | DOI: | 10.1002/adma.201706157 | Schools: | School of Materials Science & Engineering | Rights: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved. This paper was published in Advanced Materials and is made available with permission of WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | MSE Journal Articles |
SCOPUSTM
Citations
5
232
Updated on Mar 24, 2025
Web of ScienceTM
Citations
1
194
Updated on Oct 26, 2023
Page view(s)
336
Updated on Mar 23, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.