Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/138950
Title: | Superexchange effects on oxygen reduction activity of edge-sharing [CoxMn1-xO6] octahedra in spinel oxide | Authors: | Zhou, Ye Sun, Shengnan Xi, Shibo Duan, Yan Sritharan, Thirumany Du, Yonghua Xu, Zhichuan Jason |
Keywords: | Engineering::Materials | Issue Date: | 2018 | Source: | Zhou, Y., Sun, S., Xi, S., Duan, Y., Sritharan, T., Du, Y., & Xu, Z. J. (2018). Superexchange effects on oxygen reduction activity of edge-sharing [CoxMn1-xO6] octahedra in spinel oxide. Advanced Materials, 30(11), 1705407-. doi:10.1002/adma.201705407 | Journal: | Advanced Materials | Abstract: | Mn-Co containing spinel oxides are promising, low-cost electrocatalysts for the oxygen reduction reaction (ORR). Most studies are devoted to the design of porous Mn-Co spinels or to strongly coupled hybrids (e.g., MnCo2 O4 /N-doped-rmGO) to maximize the mass efficiency. The lack of analyses by metal oxide intrinsic activity (activity normalized to catalysts' surface area) hinders the development of fundamental understanding of the physicochemical principles behind the catalytic activities. A systematic study on the composition dependence of ORR in ZnCox Mn2-x O4 (x = 0.0-2.0) spinel is presented here with special attention to the role of edge sharing [Cox Mn1-x O6 ] octahedra in the spinel structure. The ORR specific activity of ZnCox Mn2-x O4 spans across a potential window of 200 mV, indicating an activity difference of ≈3 orders of magnitude. The curve of composition-dependent ORR specific activity as a function of Co substitution exhibits a volcano shape with an optimum Mn/Co ratio of 0.43. It is revealed that the modulated eg occupancy of active Mn cations (0.3-0.9), as a consequence of the superexchange effect between edge sharing [CoO6 ] and [MnO6 ], reflects the ORR activity of edge sharing [Cox Mn1-x O6 ] octahedra in the ZnCox Mn2-x O4 spinel oxide. These findings offer crucial insights in designing spinel oxide catalysts with fine-tuned eg occupancy for efficient catalysis. | URI: | https://hdl.handle.net/10356/138950 | ISSN: | 0935-9648 | DOI: | 10.1002/adma.201705407 | Schools: | School of Materials Science and Engineering | Organisations: | Solar Fuel Laboratory | Research Centres: | Energy Research Institute @ NTU (ERI@N) | Rights: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved. This paper was published in Advanced Materials and is made available with permission of WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | MSE Journal Articles |
SCOPUSTM
Citations
5
169
Updated on May 4, 2025
Web of ScienceTM
Citations
5
148
Updated on Oct 25, 2023
Page view(s)
324
Updated on May 7, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.