Please use this identifier to cite or link to this item:
Title: Superexchange effects on oxygen reduction activity of edge-sharing [CoxMn1-xO6] octahedra in spinel oxide
Authors: Zhou, Ye
Sun, Shengnan
Xi, Shibo
Duan, Yan
Sritharan, Thirumany
Du, Yonghua
Xu, Zhichuan Jason
Keywords: Engineering::Materials
Issue Date: 2018
Source: Zhou, Y., Sun, S., Xi, S., Duan, Y., Sritharan, T., Du, Y., & Xu, Z. J. (2018). Superexchange effects on oxygen reduction activity of edge-sharing [CoxMn1-xO6] octahedra in spinel oxide. Advanced Materials, 30(11), 1705407-. doi:10.1002/adma.201705407
Journal: Advanced Materials
Abstract: Mn-Co containing spinel oxides are promising, low-cost electrocatalysts for the oxygen reduction reaction (ORR). Most studies are devoted to the design of porous Mn-Co spinels or to strongly coupled hybrids (e.g., MnCo2 O4 /N-doped-rmGO) to maximize the mass efficiency. The lack of analyses by metal oxide intrinsic activity (activity normalized to catalysts' surface area) hinders the development of fundamental understanding of the physicochemical principles behind the catalytic activities. A systematic study on the composition dependence of ORR in ZnCox Mn2-x O4 (x = 0.0-2.0) spinel is presented here with special attention to the role of edge sharing [Cox Mn1-x O6 ] octahedra in the spinel structure. The ORR specific activity of ZnCox Mn2-x O4 spans across a potential window of 200 mV, indicating an activity difference of ≈3 orders of magnitude. The curve of composition-dependent ORR specific activity as a function of Co substitution exhibits a volcano shape with an optimum Mn/Co ratio of 0.43. It is revealed that the modulated eg occupancy of active Mn cations (0.3-0.9), as a consequence of the superexchange effect between edge sharing [CoO6 ] and [MnO6 ], reflects the ORR activity of edge sharing [Cox Mn1-x O6 ] octahedra in the ZnCox Mn2-x O4 spinel oxide. These findings offer crucial insights in designing spinel oxide catalysts with fine-tuned eg occupancy for efficient catalysis.
ISSN: 0935-9648
DOI: 10.1002/adma.201705407
Rights: © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved. This paper was published in Advanced Materials and is made available with permission of WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MSE Journal Articles

Citations 5

Updated on Nov 25, 2022

Web of ScienceTM
Citations 5

Updated on Nov 25, 2022

Page view(s)

Updated on Nov 28, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.