Please use this identifier to cite or link to this item:
Title: Rational design of intertwined carbon nanotubes threaded porous CoP@carbon nanocubes as anode with superior lithium storage
Authors: Zhu, Peipei
Zhang, Ze
Zhao, Pengfei
Zhang, Bowei
Cao, Xun
Yu, Ji
Cai, Jianxin
Huang, Yizhong
Yang, Zhenyu
Keywords: Engineering::Materials
Issue Date: 2018
Source: Zhu, P., Zhang, Z., Zhao, P., Zhang, B., Cao, X., Yu, J., . . . Yang, Z. (2019). Rational design of intertwined carbon nanotubes threaded porous CoP@ carbon nanocubes as anode with superior lithium storage. Carbon, 142, 269-277. doi:10.1016/j.carbon.2018.10.066
Journal: Carbon
Abstract: A novel 3D porous CoP@C-CNTs composite with CNTs threaded CoP@C nanocubes is rationally designed and demonstrated as a promising anode for lithium-ion battery. The CoP@C-CNTs composite displays high surface area and abundant pores resulted from the pyrolysis of metal-organic frameworks (MOFs). CoP nanoparticles are well encapsulated in MOFs-derived carbon nanocubes, which can effectively accommodate the volume change of active CoP during charge/discharge processes. Besides, the N/P co-doped feature induced in-situ in the synthesis process helps to improve the electrical conductivity. Moreover, the presence of intertwined CNTs network threaded CoP@C nanocubes is the vital part for rapid electron transportation within the whole electrode. As a result, the CoP@C-CNTs electrode exhibits a high initial discharge capacity of 1254 mAh g−1 at a current density of 0.1 A g−1, and an outstanding rate performance (532 mAh g−1 at current densities of 5 A g−1), as well as excellent cycling stability with a capacity fade rate of ∼0.02% per cycle over 500 cycles at the current density of 2 A g−1.
ISSN: 0008-6223
DOI: 10.1016/j.carbon.2018.10.066
Rights: © 2018 Elsevier Ltd. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MSE Journal Articles

Citations 10

Updated on Mar 10, 2021

Citations 10

Updated on Mar 3, 2021

Page view(s)

Updated on Jun 25, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.