Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/139005
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Wei | en_US |
dc.contributor.author | Sun, Xiaoli | en_US |
dc.contributor.author | Tang, Yuxin | en_US |
dc.contributor.author | Xia, Huarong | en_US |
dc.contributor.author | Zeng, Yi | en_US |
dc.contributor.author | Qiao, Liang | en_US |
dc.contributor.author | Zhu, Zhiqiang | en_US |
dc.contributor.author | Lv, Zhisheng | en_US |
dc.contributor.author | Zhang, Yanyan | en_US |
dc.contributor.author | Ge, Xiang | en_US |
dc.contributor.author | Xi, Shibo | en_US |
dc.contributor.author | Wang, Zhiguo | en_US |
dc.contributor.author | Du, Yonghua | en_US |
dc.contributor.author | Chen, Xiaodong | en_US |
dc.date.accessioned | 2020-05-14T09:55:34Z | - |
dc.date.available | 2020-05-14T09:55:34Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Zhang, W., Sun, X., Tang, Y., Xia, H., Zeng, Y., Qiao, L., . . . Chen, X. (2019). Lowering charge transfer barrier of LiMn2O4 via nickel surface doping to enhance Li+ intercalation kinetics at subzero temperatures. Journal of the American Chemical Society, 141(36), 14038-14042. doi:10.1021/jacs.9b05531 | en_US |
dc.identifier.issn | 0002-7863 | en_US |
dc.identifier.uri | https://hdl.handle.net/10356/139005 | - |
dc.description.abstract | Sluggish interfacial kinetics leading to considerable loss of energy and power capabilities at subzero temperatures is still a big challenge to overcome for Li-ion batteries operating under extreme environmental conditions. Herein, using LiMn2O4 as the model system, we demonstrated that nickel surface doping to construct a new interface owning lower charge transfer energy barrier, could effectively facilitate the interfacial process and inhibit the capacity loss with decreased temperature. Detailed investigations on the charge transfer process via electrochemical impedance spectroscopy and density functional theory calculation, indicate that the interfacial chemistry tuning could effectively lower the activation energy of charge transfer process by nearly 20%, endowing the cells with ∼75.4% capacity at −30 °C, far surpassing the hardly discharged unmodified counterpart. This control of surface chemistry to tune interfacial dynamics proposes insights and design ideas for batteries to well survive under thermal extremes. | en_US |
dc.description.sponsorship | NRF (Natl Research Foundation, S’pore) | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Journal of the American Chemical Society | en_US |
dc.rights | This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of the American Chemical Society, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/jacs.9b05531 | en_US |
dc.subject | Engineering::Materials::Energy materials | en_US |
dc.title | Lowering charge transfer barrier of LiMn2O4 via nickel surface doping to enhance Li+ intercalation kinetics at subzero temperatures | en_US |
dc.type | Journal Article | en |
dc.contributor.school | School of Materials Science & Engineering | en_US |
dc.contributor.organization | Innovative Centre for Flexible Devices | en_US |
dc.identifier.doi | 10.1021/jacs.9b05531 | - |
dc.description.version | Accepted version | en_US |
dc.identifier.pmid | 31448603 | - |
dc.identifier.scopus | 2-s2.0-85072057500 | - |
dc.identifier.issue | 36 | en_US |
dc.identifier.volume | 141 | en_US |
dc.identifier.spage | 14038 | en_US |
dc.identifier.epage | 14042 | en_US |
dc.subject.keywords | Lithium Ion Battery | en_US |
dc.subject.keywords | Low Temperature | en_US |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
Appears in Collections: | MSE Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Lowering Charge Transfer Barrier of LiMn2O4 via Nickel Surface Doping.pdf | 554.12 kB | Adobe PDF | View/Open |
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.