Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/139078
Title: Constructing multifunctional heterostructure of Fe2O3@Ni3Se4 nanotubes
Authors: Zheng, Penglun
Zhang, Yu
Dai, Zhengfei
Zheng, Yun
Dinh, Khang Ngoc
Yang, Jun
Dangol, Raksha
Liu, Xiaobo
Yan, Qingyu
Keywords: Engineering::Materials
Issue Date: 2018
Source: Zheng, P., Zhang, Y., Dai, Z., Zheng, Y., Dinh, K. N., Yang, J., . . . Yan, Q. (2018). Constructing multifunctional heterostructure of Fe2O3@Ni3Se4 nanotubes. Small, 14(15), 1704065-. doi:10.1002/smll.201704065
Journal: Small
Abstract: Heterostructures have attracted increasing attention due to their amazing synergetic effects, which may improve the electrochemical properties, such as good electrical/ionic conductivity, electrochemical activity, and mechanical stability. Herein, novel hierarchical Fe2 O3 @Ni3 Se4 nanotubes are successfully fabricated by a multistep strategy. The nanotubes show length sizes of ≈250-500 nm, diameter sizes of ≈100-150 nm, and wall thicknesses of ≈10 nm. The as-prepared Fe2 O3 @Ni3 Se4 nanotubes with INi:Fe = 1:10 show excellent Li storage properties (897 mAh g-1 high reversible charge capacity at 0.1 A g-1 ), good rate performance (440 mAh g-1 at 5 A g-1 ), and outstanding long-term cycling performance (440 mAh g-1 at 5 A g-1 during the 300th cycle) as an anode material for lithium ion batteries. In addition, the Fe2 O3 @Ni3 Se4 nanotubes with INi:Fe = 1:10 (the atomic ratio between Ni and Fe) show superior electrocatalytic performance toward the oxygen evolution reaction with an overpotential of only 246 mV at 10 mA cm-2 and a low Tafel slope of 51 mV dec-1 in 1 m KOH solution.
URI: https://hdl.handle.net/10356/139078
ISSN: 1613-6810
DOI: 10.1002/smll.201704065
Rights: © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MSE Journal Articles

SCOPUSTM   
Citations 10

22
Updated on Mar 10, 2021

PublonsTM
Citations 10

19
Updated on Mar 8, 2021

Page view(s)

32
Updated on May 15, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.