Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/139220
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHandoko, Albertus D.en_US
dc.contributor.authorLiew, Laura-Lynnen_US
dc.contributor.authorLin, Mingen_US
dc.contributor.authorSankar, Gopinathanen_US
dc.contributor.authorDu, Yonghuaen_US
dc.contributor.authorSu, Haibinen_US
dc.contributor.authorDong, Zhilien_US
dc.contributor.authorGoh, Gregory Kia Liangen_US
dc.date.accessioned2020-05-18T05:45:03Z-
dc.date.available2020-05-18T05:45:03Z-
dc.date.issued2018-
dc.identifier.citationHandoko, A. D., Liew, L.-L., Lin, M., Sankar, G., Du, Y., Su, H., . . . Goh, G. K. L. (2018). Elucidation of thermally induced internal porosity in zinc oxide nanorods. Nano Research, 11(5), 2412-2423. doi:10.1007/s12274-017-1862-2en_US
dc.identifier.issn1998-0124en_US
dc.identifier.urihttps://hdl.handle.net/10356/139220-
dc.description.abstractIn situ electron microscopy, tomography, photoluminescence, and X-ray absorption spectroscopy were utilized to monitor and explain the formation and growth of internal pores within ZnO nanorods. Careful examination using electron microscopy and tomography indicate that nanosized internal pores start appearing within the individual solution-grown ZnO nanorods upon exposure to 200 °C. The pore volume growth rate is proportional to the heat treatment time, indicating that the process is diffusion controlled, akin to a reverse Ostwald ripening-like process. A manageable pore growth rate of 1.4–4.4 nm3·min−1 was observed at 540 °C, suggesting that the effective control over internal porosity can be achieved by carefully controlling the heat-treatment profile. Mechanistic studies using X-ray absorption spectroscopy indicated that the pore formation is linked to the significant reduction of the number of zinc vacancies after heat treatment. An optimum condition exists where most of the native surface defects are removed, while the bulk defects are contained within the internal pores. It is also demonstrated that the internal porosity can be exploited to improve the visible light absorption of ZnO. A combination of the lower defect density and improved light absorption of the heat-treated ZnO films thus lead to an increase in the photoelectrochemical response of more than 20× compared to that of the as-grown ZnO.en_US
dc.language.isoenen_US
dc.relation.ispartofNano Researchen_US
dc.rights© 2017 Tsinghua University Press and Springer-Verlag GmbH Germany. All rights reserved.en_US
dc.subjectScience::Chemistryen_US
dc.titleElucidation of thermally induced internal porosity in zinc oxide nanorodsen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Materials Science & Engineeringen_US
dc.identifier.doi10.1007/s12274-017-1862-2-
dc.identifier.scopus2-s2.0-85032494266-
dc.identifier.issue5en_US
dc.identifier.volume11en_US
dc.identifier.spage2412en_US
dc.identifier.epage2423en_US
dc.subject.keywordsZinc Oxideen_US
dc.subject.keywordsSolution Growthen_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:MSE Journal Articles

SCOPUSTM   
Citations 20

10
Updated on Mar 20, 2024

Web of ScienceTM
Citations 20

9
Updated on Oct 31, 2023

Page view(s)

250
Updated on Mar 28, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.