Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/139242
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Jieen_US
dc.contributor.authorHao, Weien_US
dc.contributor.authorShang, Yangen_US
dc.contributor.authorWang, Xiaotianen_US
dc.contributor.authorQiu, Denglien_US
dc.contributor.authorMa, Guanshuien_US
dc.contributor.authorChen, Chaoen_US
dc.contributor.authorLi, Shuzhouen_US
dc.contributor.authorGuo, Linen_US
dc.date.accessioned2020-05-18T06:34:42Z-
dc.date.available2020-05-18T06:34:42Z-
dc.date.issued2017-
dc.identifier.citationLin, J., Hao, W., Shang, Y., Wang, X., Qiu, D., Ma, G., . . . Guo, L. (2018). Direct experimental observation of facet‐dependent SERS of Cu2O polyhedra. Small, 14(8), 1703274-. doi:10.1002/smll.201703274en_US
dc.identifier.issn1613-6810en_US
dc.identifier.urihttps://hdl.handle.net/10356/139242-
dc.description.abstractSemiconductor-based surface enhanced Raman scattering (SERS) has attracted great attention due to its excellent spectral reproducibility, high uniformity, and good anti-interference ability. However, its relatively low SERS sensitivity still hinders its further developments in both performance and applications. Since the SERS is a peculiar surface effect, investigating the facet-dependent SERS activity of semiconductor nanostructures is crucial to boost their SERS signals. Although the semiconductor facet-dependent SERS effect is predicted via numerical calculations, convincing experimental evidence is scarce due to complicated and undefined surface conditions. In this work, three facet-defined ({100}, {110}, and {111} facets) Cu2 O microcrystals (MCs) with clear surface atomic configuration are utilized to investigate the facet-dependent SERS effect. The results from the Kelvin probe force microscopy measurements on single Cu2 O polyhedron, demonstrate that the facet-dependent work function plays a crucial role in the interfacial charge transfer process. Comparing with the {110} and {111} facets, the {100} facet possesses the lowest electronic work function, which enables more efficient interfacial charge transfer. The simulation results further confirm that the {100}-facets can transfer the most electrons from Cu2 O MCs to molecules due to its lowest facet work function, resulting in the largest increment of the molecular polarization.en_US
dc.description.sponsorshipMOE (Min. of Education, S’pore)en_US
dc.language.isoenen_US
dc.relation.ispartofSmallen_US
dc.rights© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved.en_US
dc.subjectEngineering::Materialsen_US
dc.titleDirect experimental observation of facet‐dependent SERS of Cu2O polyhedraen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Materials Science & Engineeringen_US
dc.identifier.doi10.1002/smll.201703274-
dc.identifier.pmid29239098-
dc.identifier.scopus2-s2.0-85038037367-
dc.identifier.issue8en_US
dc.identifier.volume14en_US
dc.subject.keywordsChemical Enhancementen_US
dc.subject.keywordsFacet-dependent Interfacial Charge Transferen_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:MSE Journal Articles

SCOPUSTM   
Citations 5

94
Updated on Dec 2, 2022

Web of ScienceTM
Citations 5

86
Updated on Dec 2, 2022

Page view(s)

132
Updated on Dec 5, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.