Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/139535
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Jianen_US
dc.contributor.authorSun, Yuanmiaoen_US
dc.contributor.authorZhu, Jiaweien_US
dc.contributor.authorKou, Zongkuien_US
dc.contributor.authorHu, Peien_US
dc.contributor.authorLiu, Leien_US
dc.contributor.authorLi, Shuzhouen_US
dc.contributor.authorMu, Shichunen_US
dc.contributor.authorHuang, Yunhuien_US
dc.date.accessioned2020-05-20T04:34:53Z-
dc.date.available2020-05-20T04:34:53Z-
dc.date.issued2018-
dc.identifier.citationZhang, J., Sun, Y., Zhu, J., Kou, Z., Hu, P., Liu, L., . . . Huang, Y. (2018). Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. Nano Energy, 52, 307-314. doi:10.1016/j.nanoen.2018.08.003en_US
dc.identifier.issn2211-2855en_US
dc.identifier.urihttps://hdl.handle.net/10356/139535-
dc.description.abstractDefect and N-activated electronic engineering are of paramount importance for developing highly active carbon-based electrocatalysts toward oxygen reduction reaction (ORR) because the binding affinity of the carbon matrix can be efficiently tuned and thus promote the electrocatalytic activity. Herein, we present a facile and general strategy for fabricating pyridinic-N dominated and defect-enriched graphene-like nanocarbon material (ND-GLC) involving in-situ alkaline activation of cellulose and ammonia injection. The ND-GLC material has a superior and enhanced ORR activity and stability compared to commercial Pt/C catalyst in both rotating disk electrode measurements and Zn-air battery applications. Experimental and theoretical studies describe that the high electrocatalytic activity of ND-GLC mainly originates from the synergetic effect of edges/defects and pyridinic-N dopants. Importantly, our concept is demonstrated to be universal for other carbon-based nanomaterials (i.e., graphite nanoplates, carbon nanotubes, carbon nanospheres, graphene nanosheets).en_US
dc.language.isoenen_US
dc.relation.ispartofNano Energyen_US
dc.rights© 2018 Elsevier Ltd. All rights reserved.en_US
dc.subjectEngineering::Materialsen_US
dc.titleDefect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reductionen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Materials Science & Engineeringen_US
dc.identifier.doi10.1016/j.nanoen.2018.08.003-
dc.identifier.scopus2-s2.0-85051054899-
dc.identifier.volume52en_US
dc.identifier.spage307en_US
dc.identifier.epage314en_US
dc.subject.keywordsElectrocatalystsen_US
dc.subject.keywordsOxygen Reductionen_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:MSE Journal Articles

SCOPUSTM   
Citations 5

74
Updated on Mar 2, 2021

PublonsTM
Citations 5

68
Updated on Mar 7, 2021

Page view(s)

171
Updated on Aug 14, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.