Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/139587
Title: Multiproblem surrogates : transfer evolutionary multiobjective optimization of computationally expensive problems
Authors: Tan, Alan Wei Ming
Ong, Yew-Soon
Gupta, Abhishek
Goh, Chi-Keong
Keywords: Engineering::Computer science and engineering
Issue Date: 2017
Source: Tan, A. W. M., Ong, Y.-S., Gupta, A., & Goh, C.-K. (2019). Multiproblem surrogates : transfer evolutionary multiobjective optimization of computationally expensive problems. IEEE Transactions on Evolutionary Computation, 23(1), 15-28. doi:10.1109/tevc.2017.2783441
Journal: IEEE Transactions on Evolutionary Computation
Abstract: In most real-world settings, designs are often gradually adapted and improved over time. Consequently, there exists knowledge from distinct (but possibly related) design exercises, which have either been previously completed or are currently in-progress, that may be leveraged to enhance the optimization performance of a particular target optimization task of interest. Further, it is observed that modern day design cycles are typically distributed in nature, and consist of multiple teams working on associated ideas in tandem. In such environments, vast amounts of related information can become available at various stages of the search process corresponding to some ongoing target optimization exercise. Successfully exploiting this knowledge is expected to be of significant value in many practical settings, where solving an optimization problem from scratch may be exorbitantly costly or time consuming. Accordingly, in this paper, we propose an adaptive knowledge reuse framework for surrogate-assisted multiobjective optimization of computationally expensive problems, based on the novel idea of multiproblem surrogates. This idea provides the capability to acquire and spontaneously transfer learned models across problems, facilitating efficient global optimization. The efficacy of our proposition is demonstrated on a series of synthetic benchmark functions, as well as two practical case studies.
URI: https://hdl.handle.net/10356/139587
ISSN: 1089-778X
DOI: 10.1109/TEVC.2017.2783441
Rights: © 2017 IEEE. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCSE Journal Articles

SCOPUSTM   
Citations 10

13
Updated on Aug 31, 2020

PublonsTM
Citations

9
Updated on Nov 24, 2020

Page view(s)

16
Updated on Nov 24, 2020

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.