Please use this identifier to cite or link to this item:
Title: Remarks on multi-output Gaussian process regression
Authors: Liu, Haitao
Cai, Jianfei
Ong, Yew-Soon
Keywords: Engineering::Computer science and engineering
Issue Date: 2018
Source: Liu, H., Cai, J., & Ong, Y.-S. (2018). Remarks on multi-output Gaussian process regression. Knowledge-Based Systems, 144, 102-121. doi:10.1016/j.knosys.2017.12.034
Journal: Knowledge-Based Systems
Abstract: Multi-output regression problems have extensively arisen in modern engineering community. This article investigates the state-of-the-art multi-output Gaussian processes (MOGPs) that can transfer the knowledge across related outputs in order to improve prediction quality. We classify existing MOGPs into two main categories as (1) symmetric MOGPs that improve the predictions for all the outputs, and (2) asymmetric MOGPs, particularly the multi-fidelity MOGPs, that focus on the improvement of high fidelity output via the useful information transferred from related low fidelity outputs. We review existing symmetric/asymmetric MOGPs and analyze their characteristics, e.g., the covariance functions (separable or non-separable), the modeling process (integrated or decomposed), the information transfer (bidirectional or unidirectional), and the hyperparameter inference (joint or separate). Besides, we assess the performance of ten representative MOGPs thoroughly on eight examples in symmetric/asymmetric scenarios by considering, e.g., different training data (heterotopic or isotopic), different training sizes (small, moderate and large), different output correlations (low or high), and different output sizes (up to four outputs). Based on the qualitative and quantitative analysis, we give some recommendations regarding the usage of MOGPs and highlight potential research directions.
ISSN: 0950-7051
DOI: 10.1016/j.knosys.2017.12.034
Rights: © 2018 Elsevier B.V. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCSE Journal Articles

Citations 10

Updated on Mar 10, 2021

Citations 10

Updated on Mar 6, 2021

Page view(s)

Updated on Apr 10, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.