Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/139629
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYan, Yongen_US
dc.contributor.authorWang, Qiaojunen_US
dc.contributor.authorJiang, Chunyangen_US
dc.contributor.authorYao, Yaoen_US
dc.contributor.authorLu, Dien_US
dc.contributor.authorZheng, Jianweien_US
dc.contributor.authorDai, Yihuen_US
dc.contributor.authorWang, Hongmingen_US
dc.contributor.authorYang, Yanhuien_US
dc.date.accessioned2020-05-20T08:50:56Z-
dc.date.available2020-05-20T08:50:56Z-
dc.date.issued2018-
dc.identifier.citationYan, Y., Wang, Q., Jiang, C., Yao, Y., Lu, D., Zheng, J., . . ., Yang, Y. (2018). Ru/Al2O3 catalyzed CO2 hydrogenation : oxygen-exchange on metal-support interfaces. Journal of Catalysis, 367, 194-205. doi:10.1016/j.jcat.2018.08.026en_US
dc.identifier.issn0021-9517en_US
dc.identifier.urihttps://hdl.handle.net/10356/139629-
dc.description.abstractThe metal-support interfaces of metallic nanoparticles supported on oxide surfaces determine the activated dissociation of CO2 in CO2 hydrogenation. It also guides the catalytic pathway towards either CO2 methanation or reverse water-gas shift (rWGS). In this work, Ru/Al2O3 catalysts with different Ru structural configurations were prepared by controlling the Ru weight loadings, which revealed the structure-dependence of production rates for CO and CH4 formation with different apparent activation energies. Based on the characterization results, two catalyst models were setup: the Ru9/Al2O3 model consisted of an interface of monolayer Ru sites tightly contacted with γ-Al2O3 support, and the Ru35/Al2O3 model represented a relatively larger Ru nanocluster supported on γ-Al2O3. Theoretical calculations of these two models demonstrated that monolayer Ru sites favored the rWGS route with a relatively low energy barrier for both CO2 activation and CO formation steps, while Ru nanoclusters preferred the methanation route energetically. Furthermore, the combination of theoretical calculations and experimental isotope-exchange measurements suggested that the interfacial O species in Ru-O-Al interfaces played a critical role in CO2 activation via oxygen-exchanging with the O atom in the feeding CO2 and consequently incorporation into the final hydrogenation product.en_US
dc.description.sponsorshipNRF (Natl Research Foundation, S’pore)en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Catalysisen_US
dc.rights© 2018 Elsevier Inc. All rights reserved. This paper was published in Journal of Catalysis and is made available with permission of Elsevier Inc.en_US
dc.subjectEngineering::Chemical engineeringen_US
dc.titleRu/Al2O3 catalyzed CO2 hydrogenation : oxygen-exchange on metal-support interfacesen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Chemical and Biomedical Engineeringen_US
dc.identifier.doi10.1016/j.jcat.2018.08.026-
dc.description.versionAccepted versionen_US
dc.identifier.scopus2-s2.0-85053735089-
dc.identifier.volume367en_US
dc.identifier.spage194en_US
dc.identifier.epage205en_US
dc.subject.keywordsCO2en_US
dc.subject.keywordsMethanationen_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:SCBE Journal Articles
Files in This Item:
File Description SizeFormat 
RuAl2O3 catalyzed CO2 hydrogenation-Oxygen-exchange.pdf2.49 MBAdobe PDFView/Open

SCOPUSTM   
Citations 10

23
Updated on Mar 2, 2021

PublonsTM
Citations 10

23
Updated on Mar 6, 2021

Page view(s)

132
Updated on May 21, 2022

Download(s) 50

46
Updated on May 21, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.