Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/139792
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Yuchenen_US
dc.contributor.authorXu, Yanen_US
dc.contributor.authorDong, Zhao Yangen_US
dc.date.accessioned2020-05-21T08:25:04Z-
dc.date.available2020-05-21T08:25:04Z-
dc.date.issued2017-
dc.identifier.citationZhang, Y., Xu, Y., & Dong, Z. Y. (2018). Robust ensemble data analytics for incomplete PMU measurements-based power system stability assessment. IEEE Transactions on Power Systems, 33(1), 1124-1126. doi:10.1109/TPWRS.2017.2698239en_US
dc.identifier.issn0885-8950en_US
dc.identifier.urihttps://hdl.handle.net/10356/139792-
dc.description.abstractThis letter proposes a new ensemble data-analytics model for PMU-based pre-contingency stability assessment (SA) considering incomplete data measurements. The model consists of a minimum number of single classifiers which are, respectively, trained by a strategically selected cluster of PMU measurements. Under any PMU missing scenario, the power grid observability from available PMUs can still be ensured to the maximum extent to maintain the SA accuracy. The proposed method is verified through both theoretical proof and numerical simulations.en_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Transactions on Power Systemsen_US
dc.rights© 2017 IEEE. All rights reserved.en_US
dc.subjectEngineering::Electrical and electronic engineeringen_US
dc.titleRobust ensemble data analytics for incomplete PMU measurements-based power system stability assessmenten_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.identifier.doi10.1109/TPWRS.2017.2698239-
dc.identifier.issue1en_US
dc.identifier.volume33en_US
dc.identifier.spage1124en_US
dc.identifier.epage1126en_US
dc.subject.keywordsData Analyticsen_US
dc.subject.keywordsPMUen_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:EEE Journal Articles

Web of ScienceTM
Citations 10

45
Updated on Jun 5, 2023

Page view(s)

177
Updated on Jun 6, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.