Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYu, Junhongen_US
dc.contributor.authorSharma, Manojen_US
dc.contributor.authorSharma, Ashmaen_US
dc.contributor.authorDelikanli, Savasen_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.contributor.authorDang, Cuongen_US
dc.identifier.citationYu, J., Sharma, M., Sharma, A.,Delikanli, S., Demir, H. V., & Dang, C. (2020). All-optical control of exciton flow in a colloidal quantum well complex. Light, science & applications, 9(1), 27-. doi:10.1038/s41377-020-0262-7en_US
dc.description.abstractExcitonics, an alternative to romising for processing information since semiconductor electronics is rapidly approaching the end of Moore's law. Currently, the development of excitonic devices, where exciton flow is controlled, is mainly focused on electric-field modulation or exciton polaritons in high-Q cavities. Here, we show an all-optical strategy to manipulate the exciton flow in a binary colloidal quantum well complex through mediation of the Förster resonance energy transfer (FRET) by stimulated emission. In the spontaneous emission regime, FRET naturally occurs between a donor and an acceptor. In contrast, upon stronger excitation, the ultrafast consumption of excitons by stimulated emission effectively engineers the excitonic flow from the donors to the acceptors. Specifically, the acceptors' stimulated emission significantly accelerates the exciton flow, while the donors' stimulated emission almost stops this process. On this basis, a FRET-coupled rate equation model is derived to understand the controllable exciton flow using the density of the excited donors and the unexcited acceptors. The results will provide an effective all-optical route for realizing excitonic devices under room temperature operation.en_US
dc.description.sponsorshipNRF (Natl Research Foundation, S’pore)en_US
dc.description.sponsorshipMOE (Min. of Education, S’pore)en_US
dc.relation.ispartofLight, science & applicationsen_US
dc.rights© 2020 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
dc.subjectEngineering::Electrical and electronic engineeringen_US
dc.titleAll-optical control of exciton flow in a colloidal quantum well complexen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.contributor.organizationThe Photonics Instituteen_US
dc.contributor.organizationCentre of Excellence for Semiconductor Lighting and Displaysen_US
dc.contributor.researchResearch Techno Plazaen_US
dc.description.versionPublished versionen_US
dc.subject.keywordsColloidal Quantum Wellsen_US
dc.subject.keywordsControlled Exciton Flowen_US
item.fulltextWith Fulltext-
Appears in Collections:EEE Journal Articles
Files in This Item:
File Description SizeFormat 
5.pdf1.16 MBAdobe PDFThumbnail

Citations 20

Updated on Dec 3, 2023

Web of ScienceTM
Citations 20

Updated on Oct 25, 2023

Page view(s)

Updated on Dec 7, 2023

Download(s) 50

Updated on Dec 7, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.