Please use this identifier to cite or link to this item:
Title: Rational design : a high-throughput computational screening and experimental validation methodology for lead-free and emergent hybrid perovskites
Authors: Chakraborty, Sudip
Xie, Wei
Mathews, Nripan
Sherburne, Matthew
Ahuja, Rajeev
Asta, Mark
Mhaisalkar, Subodh Gautam
Keywords: Engineering::Materials
Issue Date: 2017
Source: Chakraborty, S., Xie, W., Mathews, N., Sherburne, M., Ahuja, R., Asta, M., & Mhaisalkar, S. (2017). Rational design : a high-throughput computational screening and experimental validation methodology for lead-free and emergent hybrid perovskites. ACS Energy Letters, 2(4), 837–845. doi:10.1021/acsenergylett.7b00035
Journal: ACS Energy Letters 
Abstract: Perovskite solar cells, with efficiencies of 22.1%, are the only solution-processable technology to outperform multicrystalline silicon and thin-film solar cells. Whereas substantial progress has been made in scalability and stability, toxicity concerns drive the need for lead replacement, intensifying research into the broad palette of elemental substitutions, solid solutions, and multidimensional structures. Perovskites have gone from comprising three to more than eight (CH3NH3, HC(NH2)2, Cs, Rb, Pb, Sn, I, Br) organic and inorganic constituents, and a variety of new embodiments including layered, double perovskites, and metal-deficient perovskites are being explored. Although most experimentation is guided by intuition and trial-and-error-based Edisonian approaches, rational strategies underpinned by computational screening and targeted experimental validation are emerging. In addressing emergent perovskites, this perspective discusses the rational design methodology leveraging density functional theory-based high-throughput computational screening coupled to downselection strategies to accelerate the discovery of materials and industrialization of perovskite solar cells.
ISSN: 2380-8195
DOI: 10.1021/acsenergylett.7b00035
Rights: This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Energy Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles

Files in This Item:
File Description SizeFormat 
ACS energy letter.pdf3.01 MBAdobe PDFView/Open

Citations 5

Updated on Mar 2, 2021

Citations 5

Updated on Mar 5, 2021

Page view(s)

Updated on Aug 2, 2021

Download(s) 50

Updated on Aug 2, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.