Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/140307
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Zhidanen_US
dc.contributor.authorLi, Zhenjiangen_US
dc.contributor.authorWu, Kaishunen_US
dc.contributor.authorLi, Moen_US
dc.date.accessioned2020-05-28T02:07:48Z-
dc.date.available2020-05-28T02:07:48Z-
dc.date.issued2018-
dc.identifier.citationLiu, Z., Li, Z., Wu, K., & Li, M. (2018). Urban traffic prediction from mobility data using deep learning. IEEE Network, 32(4), 40-46. doi:10.1109/MNET.2018.1700411en_US
dc.identifier.issn0890-8044en_US
dc.identifier.urihttps://hdl.handle.net/10356/140307-
dc.description.abstractTraffic information is of great importance for urban cities, and accurate prediction of urban traffics has been pursued for many years. Urban traffic prediction aims to exploit sophisticated models to capture hidden traffic characteristics from substantial historical mobility data and then makes use of trained models to predict traffic conditions in the future. Due to the powerful capabilities of representation learning and feature extraction, emerging deep learning becomes a potent alternative for such traffic modeling. In this article, we envision the potential and broard usage of deep learning in predictions of various traffic indicators, for example, traffic speed, traffic flow, and accident risk. In addition, we summarize and analyze some early attempts that have achieved notable performance. By discussing these existing advances, we propose two future research directions to improve the accuracy and efficiency of urban traffic prediction on a large scale.en_US
dc.description.sponsorshipMOE (Min. of Education, S’pore)en_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Networken_US
dc.rights© 2018 IEEE. All rights reserved.en_US
dc.subjectEngineering::Computer science and engineeringen_US
dc.titleUrban traffic prediction from mobility data using deep learningen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Computer Science and Engineeringen_US
dc.identifier.doi10.1109/MNET.2018.1700411-
dc.identifier.scopus2-s2.0-85054863526-
dc.identifier.issue4en_US
dc.identifier.volume32en_US
dc.identifier.spage40en_US
dc.identifier.epage46en_US
dc.subject.keywordsData Modelsen_US
dc.subject.keywordsPredictive Modelsen_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SCSE Journal Articles

SCOPUSTM   
Citations 5

96
Updated on Mar 21, 2023

Web of ScienceTM
Citations 5

80
Updated on Mar 14, 2023

Page view(s)

214
Updated on Mar 22, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.