Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/140362
Title: | Minority carrier blocking to enhance the thermoelectric performance of solution-processed BixSb2 – xTe3 nanocomposites via a liquid-phase sintering process | Authors: | Zhang, Chaohua Ng, Hongkuan Li, Zhong Khor, Khiam Aik Xiong, Qihua |
Keywords: | Science::Physics | Issue Date: | 2017 | Source: | Zhang, C., Ng, H., Li, Z., Khor, K. A., & Xiong, Q. (2017). Minority carrier blocking to enhance the thermoelectric performance of solution-processed BixSb2 – xTe3 nanocomposites via a liquid-phase sintering process. ACS Applied Materials & Interfaces, 9(14), 12501-12510. doi:10.1021/acsami.7b01473 | Journal: | ACS Applied Materials & Interfaces | Abstract: | Minority carrier blocking through heterointerface barriers has been theoretically proposed to enhance the thermoelectric figure of merit (ZT) of bismuth telluride based nanocomposites at elevated temperatures recently (Phys. Rev. B2016, 93, 165209). Here, to experimentally realize the minority carrier blocking, a liquid-phase sintering process enabled by excess Te is applied to the solution-processed BixSb2–xTe3 nanocomposites to introduce interfacial energy barriers. The controlling parameters in the liquid-phase sintering process such as the amount of excess Te, sintering temperature and holding time, and the Bi composition (x) are systemically tuned and investigated to fully understand the minority carrier blocking mechanism. These interface-engineering parameters are optimized for introducing maximum lattice imperfections and band-bending interfaces that are responsible for blocking the minority carrier and wide-range scattering of the phonons toward enhanced thermoelectric performance. High ZT > 1.4 at 375 K is realized in the Bi0.5Sb1.5Te3 sample, which is much higher than those of the state-of-the-art commercial ingots (ZT ∼ 1) and other solution-processed nanocomposites. The enhanced ZT at elevated temperatures is mostly due to the suppression of bipolar thermal conductivity by minority carrier blocking as well as the reduction of lattice thermal conductivity. Adapting this solution synthesis process to design favorable heterointerfaces for minority carrier blocking in the liquid-phase sintering process holds promise to further enhance the ZT values. | URI: | https://hdl.handle.net/10356/140362 | ISSN: | 1944-8244 | DOI: | 10.1021/acsami.7b01473 | Rights: | This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsami.7b01473 | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | SPMS Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Minority Carrier Blocking to Enhance the Thermoelectric.pdf | 2.35 MB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
10
40
Updated on Mar 29, 2023
Web of ScienceTM
Citations
10
36
Updated on Mar 29, 2023
Page view(s)
195
Updated on Mar 29, 2023
Download(s) 50
77
Updated on Mar 29, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.