Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/140389
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWen, Xinglinen_US
dc.contributor.authorXu, Weigaoen_US
dc.contributor.authorZhao, Weijieen_US
dc.contributor.authorKhurgin, Jacob B.en_US
dc.contributor.authorXiong, Qihuaen_US
dc.date.accessioned2020-05-28T08:47:20Z-
dc.date.available2020-05-28T08:47:20Z-
dc.date.issued2018-
dc.identifier.citationWen, X., Xu, W., Zhao, W., Khurgin, J. B., & Xiong, Q. (2018). Plasmonic hot carriers-controlled second harmonic generation in WSe2 bilayers. Nano Letters, 18(3), 1686-1692. doi:10.1021/acs.nanolett.7b04707en_US
dc.identifier.issn1530-6984en_US
dc.identifier.urihttps://hdl.handle.net/10356/140389-
dc.description.abstractModulating second harmonic generation (SHG) by a static electric field through either electric-field-induced SHG or charge-induced SHG has been well documented. Nonetheless, it is essential to develop the ability to dynamically control and manipulate the nonlinear properties, preferably at high speed. Plasmonic hot carriers can be resonantly excited in metal nanoparticles and then injected into semiconductors within 10–100 fs, where they eventually decay on a comparable time scale. This allows one to rapidly manipulate all kinds of characteristics of semiconductors, including their nonlinear properties. Here we demonstrate that plasmonically generated hot electrons can be injected from plasmonic nanostructure into bilayer (2L) tungsten diselenide (WSe2), breaking the material inversion symmetry and thus inducing an SHG. With a set of pump–probe experiments we confirm that it is the dynamic separation electric field resulting from the hot carrier injection (rather than a simple optical field enhancement) that is the cause of SHG. Transient absorption measurement further substantiate the plasmonic hot electrons injection and allow us to measure a rise time of ∼120 fs and a fall time of 1.9 ps. Our study creates opportunity for the ultrafast all-optical control of SHG in an all-optical manner that may enable a variety of applications.en_US
dc.description.sponsorshipNRF (Natl Research Foundation, S’pore)en_US
dc.description.sponsorshipMOE (Min. of Education, S’pore)en_US
dc.language.isoenen_US
dc.relation.ispartofNano Lettersen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Nano Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.nanolett.7b04707en_US
dc.subjectScience::Physicsen_US
dc.titlePlasmonic hot carriers-controlled second harmonic generation in WSe2 bilayersen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.contributor.organizationNOVITAS, Nanoelectronics Centre of Excellenceen_US
dc.identifier.doi10.1021/acs.nanolett.7b04707-
dc.description.versionAccepted versionen_US
dc.identifier.pmid29376381-
dc.identifier.scopus2-s2.0-85043759339-
dc.identifier.issue3en_US
dc.identifier.volume18en_US
dc.identifier.spage1686en_US
dc.identifier.epage1692en_US
dc.subject.keywordsPlasmonic Hot Carrier Injectionen_US
dc.subject.keywordsBilayer Transitional Metal Dichalcogenidesen_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:SPMS Journal Articles
Files in This Item:
File Description SizeFormat 
Plasmonic Hot Carriers Controlled Second Harmonic Generation in.pdf7.32 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 5

68
Updated on Mar 24, 2024

Web of ScienceTM
Citations 5

57
Updated on Oct 29, 2023

Page view(s)

180
Updated on Mar 28, 2024

Download(s) 20

222
Updated on Mar 28, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.