Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/140653
Title: Fatigue behavior of ASTM A131 EH36 steel samples additively manufactured with selective laser melting
Authors: Wang, Jingjing
Zhang, Meng
Tan, Xipeng
Liu, Tong
Bi, Guijun
Li, Hua
Tor, Shu Beng
Liu, Erjia
Keywords: Engineering::Materials::Material testing and characterization
Engineering::Materials::Metallic materials::Alloys
Issue Date: 2020
Source: Wang, J., Zhang, M., Tan, X., Liu, T., Bi, G., Li, H., . . . Liu, E. (2020). Fatigue behavior of ASTM A131 EH36 steel samples additively manufactured with selective laser melting. Materials Science and Engineering: A, 777, 139049-. doi:10.1016/j.msea.2020.139049
Journal: Materials Science and Engineering: A 
Abstract: By tuning the process parameters mainly scanning speed ASTM A131 EH36 steel samples with high strength (1000 MPa) and fair ductility (10%) were additively manufactured through a selective laser melting process. A dual phase structure consisting of recrystallized fine ferrite and highly tempered martensite (<30%) resulted from a lower laser scanning speed of 100 mm/s. The higher heat input incurred with lower scanning speed improved the densification of the built samples, which was beneficial for achieving enhanced mechanical properties. Fatigue life cycles of the samples built at lower scanning speeds surpassed those built at higher scanning speeds. Porosity induced failure was found to dominate the high cycle fatigue failure for all the samples printed, which was attributed to the ubiquitous distribution of the pores in large quantity and size with complex shapes. Grain orientation in the horizontally built samples favoured crack propagation in the early stage, which was believed to contribute to the lowered fatigue limit and life. The stable crack propagation and fast fracture regime were characterized by tearing topology surface and dimples, respectively, for the samples. The fatigue behavior of the printed EH36 steel samples was correlated to their microstructure as well as the printing process conditions. Soft phases such as retained austenite and coarsened ferrite, etc. may contribute to the fatigue behavior of the samples in certain aspect.
URI: https://hdl.handle.net/10356/140653
ISSN: 0921-5093
DOI: 10.1016/j.msea.2020.139049
Rights: © 2020 Elsevier B.V. All rights reserved. This paper was published in Materials Science and Engineering: A and is made available with permission of Elsevier B.V.
Fulltext Permission: embargo_20221231
Fulltext Availability: With Fulltext
Appears in Collections:MAE Journal Articles

Files in This Item:
File Description SizeFormat 
fatigue behavior of ASTM A131 EH36 steel samples additively manufactured with selective laser melting_preprint.pdf
  Until 2022-12-31
3.36 MBAdobe PDFUnder embargo until Dec 31, 2022

PublonsTM
Citations 50

1
Updated on Mar 5, 2021

Page view(s)

47
Updated on Apr 17, 2021

Download(s) 50

34
Updated on Apr 17, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.