Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/140813
Title: | Core – shell CuPd@Pd tetrahedra with concave structures and Pd-enriched surface boost formic acid oxidation | Authors: | Chen, Yifan Yang, Yifan Fu, Gengtao Xu, Lin Sun, Dongmei Lee, Jong-Min Tang, Yawen |
Keywords: | Engineering::Chemical engineering | Issue Date: | 2018 | Source: | Chen, Y., Yang, Y., Fu, G., Xu, L., Sun, D., Lee, J.-M., & Tang, Y. (2018). Core – shell CuPd@Pd tetrahedra with concave structures and Pd-enriched surface boost formic acid oxidation. Journal of Materials Chemistry A, 6(23), 10632-10638. doi:10.1039/C8TA03322F | Journal: | Journal of Materials Chemistry A | Abstract: | The shape control of multi-metal nanocrystals with concave structures is significant for constructing high-efficiency electrocatalysts. Herein, we report an effective one-pot hydrothermal synthetic strategy that allows high-yield production of CuPd@Pd core–shell tetrahedra with concave and Pd-enriched surfaces. It is demonstrated that L-proline plays a vital role as a structure-directing agent in tuning the nucleation and growth of concave CuPd@Pd tetrahedra because of the strong coordination abilities of C[double bond, length as m-dash]O, O–H and N–H groups with metal ions. This bimetallic concave structure can endow the nanocrystals with abundant catalytically active sites and fascinating electronic effects, which are suggested to be favorable for electrocatalysis. When used as an electrocatalyst, the newly developed catalyst presented 4.2 and 2.4 times enhanced mass activity (501.8 A gPd−1) and specific activity (49.3 A m−2) for the formic acid oxidation when compared with those of the commercial Pd black catalyst (120.6 A gPd−1; 20.8 A m−2), respectively. Moreover, the concave CuPd@Pd catalyst exhibits substantially enhanced electrocatalytic stability under harsh electrochemical conditions and superior resistance to COads poisoning; this demonstrates that it is a promising candidate as an anode catalyst in direct formic acid fuel cells. | URI: | https://hdl.handle.net/10356/140813 | ISSN: | 2050-7488 | DOI: | 10.1039/C8TA03322F | Schools: | School of Chemical and Biomedical Engineering | Rights: | © 2018 The Royal Society of Chemistry. All rights reserved. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | SCBE Journal Articles |
SCOPUSTM
Citations
5
79
Updated on Apr 24, 2025
Web of ScienceTM
Citations
5
73
Updated on Oct 25, 2023
Page view(s)
322
Updated on May 5, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.