Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/140924
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAng, Jeremy Koon Keongen_US
dc.contributor.authorChua, Jestoni Song Mien_US
dc.contributor.authorChang, Zhong Jieen_US
dc.contributor.authorLi, Zhengtaoen_US
dc.contributor.authorBai, Hongweien_US
dc.contributor.authorSun, Darren Delaien_US
dc.date.accessioned2020-06-03T02:21:19Z-
dc.date.available2020-06-03T02:21:19Z-
dc.date.issued2018-
dc.identifier.citationAng, J. K. K., Chua, J. S. M., Chang, Z. J., Li, Z., Bai, H., & Sun, D. D. (2018). An ion exchange approach assembled multi-dimensional hierarchical Fe – TiO2 composite micro-/nano multi-shell hollow spheres for bacteria lysis through utilizing visible light. Catalysis Science & Technnology, 8(8), 2077-2086. doi:10.1039/c8cy00078fen_US
dc.identifier.issn2044-4753en_US
dc.identifier.urihttps://hdl.handle.net/10356/140924-
dc.description.abstractThe ion exchange approach demonstrates the fabrication of the hierarchical, multi-shell, micro-/nano, Fe–TiO2 composite hollow spheres (HMS). The synthesis mechanism elucidates a novel technique to achieve a Fe–TiO2 composite multi-shell structure by first allowing Fe ions to penetrate the pores of carbonaceous spheres at room temperature. This is followed by ion exchange in a solvothermal treatment. Lastly, the outward diffusion of the Fe ions allows the inward diffusion of Ti ions to fill the voids created within the pores of the carbonaceous spheres and simultaneously form hierarchical thorns. The ion exchange enabled a deeper penetration of Ti ions into the pores of the carbonaceous spheres. The oxidization of the carbonaceous spheres leads to the convergence of deeply penetrated Ti–Fe ions which crystallize to form Fe–TiO2 composite multi-shell spheres. The HMS spheres revealed an agglomeration of 20 nm nanoparticulates and a uniform dispersion of Fe–TiO2 composite. Increasing the Fe ion penetration duration from 6 h up to 48 h was found to gradually reduce the band gap from 3.1 eV to approximately 2.7 eV. The synthesis mechanism elucidates the compaction of metal ions within the pores of the carbonaceous spheres which leads to a smoother inner sphere morphology and, consequently, the reduction in the mesopores diameter from 15 nm to 4 nm. The HMS demonstrate an enhanced physical lysis of 40% bacteria under dark conditions owing to the hierarchical thorn-like structure and an enhanced bactericidal capability to 70% under the irradiation of visible light over a period of 1 h. The initial physical lysis by the hierarchical thorn surface to the cell and the subsequent release of reactive oxygen species to degrade the ruptured bacteria wall or access the RNA/DNA led to further cell death.en_US
dc.language.isoenen_US
dc.relation.ispartofCatalysis Science & Technologyen_US
dc.rights© 2018 The Royal Society of Chemistry. All rights reserved.en_US
dc.subjectEngineering::Civil engineeringen_US
dc.titleAn ion exchange approach assembled multi-dimensional hierarchical Fe – TiO2 composite micro-/nano multi-shell hollow spheres for bacteria lysis through utilizing visible lighten_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Civil and Environmental Engineeringen_US
dc.contributor.organizationNano Sun Pte Ltden_US
dc.contributor.organizationNTU Innovation Centreen_US
dc.identifier.doi10.1039/c8cy00078f-
dc.identifier.scopus2-s2.0-85046011232-
dc.identifier.issue8en_US
dc.identifier.volume8en_US
dc.identifier.spage2077en_US
dc.identifier.epage2086en_US
dc.subject.keywordsFe–TiO2 Compositeen_US
dc.subject.keywordsBacteria Lysisen_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:CEE Journal Articles

SCOPUSTM   
Citations 50

3
Updated on Mar 20, 2023

Web of ScienceTM
Citations 50

3
Updated on Mar 18, 2023

Page view(s)

208
Updated on Mar 20, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.