Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/141191
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Yuchenen_US
dc.contributor.authorXu, Yanen_US
dc.contributor.authorDong, Zhao Yangen_US
dc.contributor.authorZhang, Peien_US
dc.date.accessioned2020-06-05T00:53:09Z-
dc.date.available2020-06-05T00:53:09Z-
dc.date.issued2018-
dc.identifier.citationZhang, Y., Xu, Y., Dong, Z. Y., & Zhang, P. (2019). Real-time assessment of fault-induced delayed voltage recovery : a probabilistic self-adaptive data-driven method. IEEE Transactions on Smart Grid, 10(3), 2485-2494. doi:10.1109/TSG.2018.2800711en_US
dc.identifier.issn1949-3053en_US
dc.identifier.urihttps://hdl.handle.net/10356/141191-
dc.description.abstractFault-induced delayed voltage recovery (FIDVR) events have become a critical threat to modern power systems with high-level inverter-interfaced renewable power generation. Aiming at the real-time assessment on FIDVR, this paper proposes a data-driven method using real-time bus voltage trajectory measurements. Based on ensemble learning and probabilistic prediction techniques, a self-adaptive decision-making model is developed to rapidly predict the FIDVR severity index following a disturbance in the system. The salient feature of the proposed method is that the FIDVR assessment result can be delivered as early as possible without impairing the assessment accuracy, thereby more time is available for emergency controls. The proposed method is tested on New England 39-bus system, and the results demonstrate its high accuracy and exceptionally faster speed over existing methods.en_US
dc.description.sponsorshipMOE (Min. of Education, S’pore)en_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Transactions on Smart Griden_US
dc.rights© 2018 IEEE. All rights reserved.en_US
dc.subjectEngineering::Electrical and electronic engineeringen_US
dc.titleReal-time assessment of fault-induced delayed voltage recovery : a probabilistic self-adaptive data-driven methoden_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.identifier.doi10.1109/TSG.2018.2800711-
dc.identifier.scopus2-s2.0-85041692669-
dc.identifier.issue3en_US
dc.identifier.volume10en_US
dc.identifier.spage2485en_US
dc.identifier.epage2494en_US
dc.subject.keywordsData-analyticsen_US
dc.subject.keywordsEnsemble Learningen_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:EEE Journal Articles

SCOPUSTM   
Citations 10

30
Updated on May 27, 2023

Web of ScienceTM
Citations 10

25
Updated on May 29, 2023

Page view(s)

100
Updated on May 29, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.