Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/141283
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Mengen_US
dc.contributor.authorSun, Chen-Nanen_US
dc.contributor.authorZhang, Xiangen_US
dc.contributor.authorWei, Junen_US
dc.contributor.authorHardacre, Daviden_US
dc.contributor.authorLi, Huaen_US
dc.date.accessioned2020-06-05T08:16:04Z-
dc.date.available2020-06-05T08:16:04Z-
dc.date.issued2018-
dc.identifier.citationZhang, M., Sun, C.-N., Zhang, X., Wei, J., Hardacre, D., & Li, H. (2019). High cycle fatigue and ratcheting interaction of laser powder bed fusion stainless steel 316L : fracture behaviour and stress-based modelling. International Journal of Fatigue, 121, 252-264. doi:10.1016/j.ijfatigue.2018.12.016en_US
dc.identifier.issn0142-1123en_US
dc.identifier.urihttps://hdl.handle.net/10356/141283-
dc.description.abstractVariations in the physical and mechanical properties of parts made by laser power bed fusion (L-PBF) could be affected by the choice of processing or post-processing strategies. This work examined the influence of build orientation and post-processing treatments (annealing or hot isostatic pressing) on the fatigue and fracture behaviours of L-PBF stainless steel 316L in the high cycle fatigue region, i.e. 104 – 106 cycles. Experimental results show that both factors introduce significant changes in the plastic deformation properties, which affect fatigue strength via the mechanism of fatigue-ratcheting interaction. Cyclic plasticity is characterised by hardening, which promotes mean stress insensitivity and improved fatigue resistance. Fatigue activities, involving the initiation of crack at defects and microstructural heterogeneities, are of greater relevance to the longer life region where the global deformation mode is elastic. As the simultaneous actions of ratcheting and fatigue generate complex nonlinear interactions between the alternating stress amplitude and mean stress, the fatigue properties could not be effectively predicted using traditional stress-based models. A modification to the Goodman relation was proposed to account for the added effects of cyclic plasticity and was demonstrated to produce good agreement with experimental results for both cyclic hardening and softening materials.en_US
dc.description.sponsorshipEDB (Economic Devt. Board, S’pore)en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Fatigueen_US
dc.rights© 2018 Elsevier Ltd. All rights reserved. This paper was published in International Journal of Fatigue and is made available with permission of Elsevier Ltd.en_US
dc.subjectEngineering::Mechanical engineeringen_US
dc.titleHigh cycle fatigue and ratcheting interaction of laser powder bed fusion stainless steel 316L : fracture behaviour and stress-based modellingen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.contributor.researchSingapore Centre for 3D Printingen_US
dc.contributor.researchSingapore Institute of Manufacturing Technologyen_US
dc.identifier.doi10.1016/j.ijfatigue.2018.12.016-
dc.description.versionAccepted versionen_US
dc.identifier.volume121en_US
dc.identifier.spage252en_US
dc.identifier.epage264en_US
dc.subject.keywordsHigh Cycle Fatigueen_US
dc.subject.keywordsRatchetingen_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:SC3DP Journal Articles
Files in This Item:
File Description SizeFormat 
Accepted manuscript.pdf2.97 MBAdobe PDFView/Open

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.