Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/141283
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Meng | en_US |
dc.contributor.author | Sun, Chen-Nan | en_US |
dc.contributor.author | Zhang, Xiang | en_US |
dc.contributor.author | Wei, Jun | en_US |
dc.contributor.author | Hardacre, David | en_US |
dc.contributor.author | Li, Hua | en_US |
dc.date.accessioned | 2020-06-05T08:16:04Z | - |
dc.date.available | 2020-06-05T08:16:04Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Zhang, M., Sun, C.-N., Zhang, X., Wei, J., Hardacre, D., & Li, H. (2019). High cycle fatigue and ratcheting interaction of laser powder bed fusion stainless steel 316L : fracture behaviour and stress-based modelling. International Journal of Fatigue, 121, 252-264. doi:10.1016/j.ijfatigue.2018.12.016 | en_US |
dc.identifier.issn | 0142-1123 | en_US |
dc.identifier.uri | https://hdl.handle.net/10356/141283 | - |
dc.description.abstract | Variations in the physical and mechanical properties of parts made by laser power bed fusion (L-PBF) could be affected by the choice of processing or post-processing strategies. This work examined the influence of build orientation and post-processing treatments (annealing or hot isostatic pressing) on the fatigue and fracture behaviours of L-PBF stainless steel 316L in the high cycle fatigue region, i.e. 104 – 106 cycles. Experimental results show that both factors introduce significant changes in the plastic deformation properties, which affect fatigue strength via the mechanism of fatigue-ratcheting interaction. Cyclic plasticity is characterised by hardening, which promotes mean stress insensitivity and improved fatigue resistance. Fatigue activities, involving the initiation of crack at defects and microstructural heterogeneities, are of greater relevance to the longer life region where the global deformation mode is elastic. As the simultaneous actions of ratcheting and fatigue generate complex nonlinear interactions between the alternating stress amplitude and mean stress, the fatigue properties could not be effectively predicted using traditional stress-based models. A modification to the Goodman relation was proposed to account for the added effects of cyclic plasticity and was demonstrated to produce good agreement with experimental results for both cyclic hardening and softening materials. | en_US |
dc.description.sponsorship | EDB (Economic Devt. Board, S’pore) | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | International Journal of Fatigue | en_US |
dc.rights | © 2018 Elsevier Ltd. All rights reserved. This paper was published in International Journal of Fatigue and is made available with permission of Elsevier Ltd. | en_US |
dc.subject | Engineering::Mechanical engineering | en_US |
dc.title | High cycle fatigue and ratcheting interaction of laser powder bed fusion stainless steel 316L : fracture behaviour and stress-based modelling | en_US |
dc.type | Journal Article | en |
dc.contributor.school | School of Mechanical and Aerospace Engineering | en_US |
dc.contributor.research | Singapore Centre for 3D Printing | en_US |
dc.contributor.research | Singapore Institute of Manufacturing Technology | en_US |
dc.identifier.doi | 10.1016/j.ijfatigue.2018.12.016 | - |
dc.description.version | Accepted version | en_US |
dc.identifier.volume | 121 | en_US |
dc.identifier.spage | 252 | en_US |
dc.identifier.epage | 264 | en_US |
dc.subject.keywords | High Cycle Fatigue | en_US |
dc.subject.keywords | Ratcheting | en_US |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
Appears in Collections: | SC3DP Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Accepted manuscript.pdf | 2.97 MB | Adobe PDF | ![]() View/Open |
PublonsTM
Citations
10
14
Updated on Mar 6, 2021
Page view(s)
177
Updated on Jul 6, 2022
Download(s) 50
86
Updated on Jul 6, 2022
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.