Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/141492
Title: Twist induced plasticity and failure mechanism of helical carbon nanotube fibers under different strain rates
Authors: Wang, Pengfei
Yang, Jinglei
Sun, Gengzhi
Zhang, Xin
Zhang, He
Zheng, Yuxuan
Xu, Songlin
Keywords: Engineering::Mechanical engineering
Issue Date: 2018
Source: Wang, P., Yang, J., Sun, G., Zhang, X., Zhang, H., Zheng, Y., & Xu, S. (2018).Twist induced plasticity and failure mechanism of helical carbon nanotube fibers under different strain rates. International Journal of Plasticity, 110, 74-94. doi:10.1016/j.ijplas.2018.06.007
Journal: International Journal of Plasticity
Abstract: Twist has been well identified as an effective parameter to tune the mechanical behavior of carbon nanotube (CNT) fibers, e.g., tensile strength, strain, modulus and elastic-plastic behaviors. In this contribution, we uncover the twist-induced plastic deformation and failure behaviors of CNT fibers shrunk by ethanol (E-CNT fiber) and polyvinyl alcohol (P-CNT) solutions under low strain rate of 0.001 s-1 and high strain rate of 1300 s-1, which are essentially important for designing high-performance composites with respect to long term stability and short-Term collision, respectively. It is found that the strain-induced microstructural evolution processes of CNT fibers depends on twist angle as a result of the strengthening effect of inter-CNT friction and the weakening effect of CNT obliquity. The tensile strength, failure strain and modulus of CNT fibers are more sensitive to strain rate as the twist angle increases. The optimum twist angle provides not only the higher tensile strength, but also the better data repeatability. The numerical results reveal that the brittle/ductile properties of filaments and their interfacial interaction will contribute to the plastic behaviors of a twist fiber. The empirical constitutive equations were built to describe the stress-strain curves of CNT fibers by taking the strain, helical geometry, twist-induced damage and strain rate into consideration.
URI: https://hdl.handle.net/10356/141492
ISSN: 0749-6419
DOI: 10.1016/j.ijplas.2018.06.007
Schools: School of Mechanical and Aerospace Engineering 
Rights: © 2018 Elsevier Ltd. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MAE Journal Articles

SCOPUSTM   
Citations 20

26
Updated on Mar 25, 2024

Web of ScienceTM
Citations 20

20
Updated on Oct 27, 2023

Page view(s)

230
Updated on Mar 28, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.