Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/141500
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYan, Zimingen_US
dc.contributor.authorXu, Yanen_US
dc.date.accessioned2020-06-09T01:47:22Z-
dc.date.available2020-06-09T01:47:22Z-
dc.date.issued2018-
dc.identifier.citationYan, Z., & Xu, Y. (2019). Data-driven load frequency control for stochastic power systems : a deep reinforcement learning method with continuous action search. IEEE Transactions on Power Systems, 34(2), 1653-1656. doi:10.1109/TPWRS.2018.2881359en_US
dc.identifier.issn0885-8950en_US
dc.identifier.urihttps://hdl.handle.net/10356/141500-
dc.description.abstractThis letter proposes a data-driven, model-free method for load frequency control (LFC) against renewable energy uncertainties based on deep reinforcement learning (DRL) in continuous action domain. The proposed method can nonlinearly derive control strategies to minimize frequency deviation with faster response speed and stronger adaptability for unmolded system dynamics. It consists of offline optimization of LFC strategies with DRL and continuous action search, and online control with policy network where features are extracted by stacked denoising auto-encoders. Numerical simulations verify the effectiveness and advantages of proposed method over existing approaches.en_US
dc.description.sponsorshipMOE (Min. of Education, S’pore)en_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Transactions on Power Systemsen_US
dc.rights© 2018 IEEE. All rights reserved.en_US
dc.subjectEngineering::Electrical and electronic engineeringen_US
dc.titleData-driven load frequency control for stochastic power systems : a deep reinforcement learning method with continuous action searchen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.identifier.doi10.1109/TPWRS.2018.2881359-
dc.identifier.scopus2-s2.0-85056584019-
dc.identifier.issue2en_US
dc.identifier.volume34en_US
dc.identifier.spage1653en_US
dc.identifier.epage1656en_US
dc.subject.keywordsContinuous Action Searchen_US
dc.subject.keywordsDeep Reinforcement Learningen_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:EEE Journal Articles

SCOPUSTM   
Citations 5

175
Updated on Mar 16, 2023

Web of ScienceTM
Citations 5

129
Updated on Mar 17, 2023

Page view(s)

226
Updated on Mar 21, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.