Please use this identifier to cite or link to this item:
Title: Biomimetic fetal rotation bioreactor for engineering bone tissues — effect of cyclic strains on upregulation of osteogenic gene expression
Authors: Ravichandran, Akhilandeshwari
Wen, Feng
Lim, Jing
Chong, Mark Seow Khoon
Chan, Jerry K. Y.
Teoh, Swee-Hin
Keywords: Engineering::Chemical engineering
Issue Date: 2018
Source: Ravichandran, A., Wen, F., Lim, J., Chong, M. S. K., Chan, J. K. Y., & Teoh, S.-H. (2018). Biomimetic fetal rotation bioreactor for engineering bone tissues — effect of cyclic strains on upregulation of osteogenic gene expression. Journal of Tissue Engineering and Regenerative Medicine, 12(4), e2039-e2050. doi:10.1002/term.2635
Journal: Journal of Tissue Engineering and Regenerative Medicine
Abstract: Cells respond to physiological mechanical stresses especially during early fetal development. Adopting a biomimetic approach, it is necessary to develop bioreactor systems to explore the effects of physiologically relevant mechanical strains and shear stresses for functional tissue growth and development. This study introduces a multimodal bioreactor system that allows application of cyclic compressive strains on premature bone grafts that are cultured under biaxial rotation (chamber rotation about 2 axes) conditions for bone tissue engineering. The bioreactor is integrated with sensors for dissolved oxygen levels and pH that allow real‐time, non‐invasive monitoring of the culture parameters. Mesenchymal stem cells‐seeded polycaprolactone–β‐tricalcium phosphate scaffolds were cultured in this bioreactor over 2 weeks in 4 different modes—static, cyclic compression, biaxial rotation, and multimodal (combination of cyclic compression and biaxial rotation). The multimodal culture resulted in 1.8‐fold higher cellular proliferation in comparison with the static controls within the first week. Two weeks of culture in the multimodal bioreactor utilizing the combined effects of optimal fluid flow conditions and cyclic compression led to the upregulation of osteogenic genes alkaline phosphatase (3.2‐fold), osteonectin (2.4‐fold), osteocalcin (10‐fold), and collagen type 1 α1 (2‐fold) in comparison with static cultures. We report for the first time, the independent and combined effects of mechanical stimulation and biaxial rotation for bone tissue engineering using a bioreactor platform with non‐invasive sensing modalities. The demonstrated results show leaning towards the futuristic vision of using a physiologically relevant bioreactor system for generation of autologous bone grafts for clinical implantation.
ISSN: 1932-6254
DOI: 10.1002/term.2635
Rights: © 2018 John Wiley & Sons, Ltd. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCBE Journal Articles

Citations 20

Updated on Jan 24, 2023

Web of ScienceTM
Citations 20

Updated on Jan 29, 2023

Page view(s)

Updated on Jan 30, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.