Please use this identifier to cite or link to this item:
Title: Si photocathode with Ag-supported dendritic Cu catalyst for CO2 reduction
Authors: Gurudayal
Beeman, Jeffrey W.
Bullock, James
Wang, Hao
Eichhorn, Johanna
Towle, Clarissa
Javey, Ali
Toma, Francesca M.
Mathews, Nripan
Ager, Joel W.
Keywords: Engineering::Materials
Issue Date: 2019
Source: Gurudayal, Beeman, J. W., Bullock, J., Wang, H., Eichhorn, J., Towle, C., . . . Ager, J. W. (2019). Si photocathode with Ag-supported dendritic Cu catalyst for CO2 reduction. Energy & Environmental Science, 12(3), 1068-1077. doi:10.1039/c8ee03547d
Journal: Energy & Environmental Science 
Abstract: Si photocathodes integrated with Ag-supported dendritic Cu catalysts are used to perform light-driven reduction of CO2 to C2 and C3 products in aqueous solution. A back illumination geometry with an n-type Si absorber was used to permit the use of absorbing metallic catalysts. Selective carrier collection was accomplished by a p+ implantation on the illumination side and an n+ implantation followed by atomic layer deposition of TiO2 on the electrolyte site. The Ag-supported dendritic Cu CO2 reduction catalyst was formed by evaporation of Ag followed by high-rate electrodeposition of Cu to form a high surface area structure. Under simulated 1 sun illumination in 0.1 M CsHCO3 saturated with CO2, the photovoltage generated by the Si (∼600 mV) enables C2 and C3 products to be produced at −0.4 vs. RHE. Texturing of both sides of the Si increases the light-limited current density, due to reduced reflection on the illumination side, and also deceases the onset potential. Under simulated diurnal illumination conditions photocathodes maintain over 60% faradaic efficiency to hydrocarbon and oxygenate products (mainly ethylene, ethanol, propanol) for several days. After 10 days of testing, contamination from the counter electrode is observed, which causes an increase in hydrogen production. This effect is mitigated by a regeneration procedure which restores the original catalyst selectivity. A tandem, self-powered CO2 reduction device was formed by coupling a Si photocathode with two series-connected semitransparent CH3NH3PbI3 perovskite solar cells, achieving an efficiency for the conversion of sunlight to hydrocarbons and oxygenates of 1.5% (3.5% for all products).
ISSN: 1754-5692
DOI: 10.1039/c8ee03547d
Schools: School of Materials Science and Engineering 
Research Centres: Energy Research Institute @ NTU (ERI@N) 
Research Techno Plaza 
Rights: © 2019 The Royal Society of Chemistry. All rights reserved. This paper was published in Energy & Environmental Science and is made available with permission of The Royal Society of Chemistry.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:ERI@N Journal Articles

Files in This Item:
File Description SizeFormat 
CO2R photocathode _SI.pdf3.99 MBAdobe PDFThumbnail
CO2R photocathode.pdf1.58 MBAdobe PDFThumbnail

Citations 5

Updated on Jun 12, 2024

Web of ScienceTM
Citations 5

Updated on Oct 31, 2023

Page view(s)

Updated on Jun 12, 2024

Download(s) 20

Updated on Jun 12, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.