Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/142070
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, Guohuaen_US
dc.contributor.authorZubkov, Maximen_US
dc.date.accessioned2020-06-15T07:48:41Z-
dc.date.available2020-06-15T07:48:41Z-
dc.date.issued2018-
dc.identifier.citationWu, G., & Zubkov, M. (2018). The Kierstead's Conjecture and limitwise monotonic functions. Annals of Pure and Applied Logic, 169(6), 467-486. doi:10.1016/j.apal.2018.01.003en_US
dc.identifier.issn0168-0072en_US
dc.identifier.urihttps://hdl.handle.net/10356/142070-
dc.description.abstractIn this paper, we prove Kierstead's conjecture for linear orders whose order types are ∑q∈QF(q), where F is an extended 0′-limitwise monotonic function, i.e. F can take value ζ. Linear orders in our consideration can have finite and infinite blocks simultaneously, and in this sense our result subsumes a recent result of C. Harris, K. Lee and S.B. Cooper, where only those linear orders with finite blocks are considered. Our result also covers one case of R. Downey and M. Moses' work, i.e. ζ⋅η. It covers some instances not being considered in both previous works mentioned above, such as m⋅η+ζ⋅η+n⋅η, for example, where m,n>0.en_US
dc.description.sponsorshipMOE (Min. of Education, S’pore)en_US
dc.language.isoenen_US
dc.relation.ispartofAnnals of Pure and Applied Logicen_US
dc.rights© 2018 Elsevier B.V. All rights reserved.en_US
dc.subjectScience::Mathematicsen_US
dc.titleThe Kierstead's Conjecture and limitwise monotonic functionsen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.identifier.doi10.1016/j.apal.2018.01.003-
dc.identifier.scopus2-s2.0-85041502152-
dc.identifier.issue6en_US
dc.identifier.volume169en_US
dc.identifier.spage467en_US
dc.identifier.epage486en_US
dc.subject.keywordsLinear Orderen_US
dc.subject.keywordsLimitwise Monotonic Functionen_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:SPMS Journal Articles

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.