Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/142120
Title: Effects of graphene/BN encapsulation, surface functionalization and molecular adsorption on the electronic properties of layered InSe : a first-principles study
Authors: Kistanov, Andrey A.
Cai, Yongqing
Zhou, Kun
Dmitriev, Sergey V.
Zhang, Yong-Wei
Keywords: Engineering::Mechanical engineering
Issue Date: 2018
Source: Kistanov, A. A., Cai, Y., Zhou, K., Dmitriev, S. V., & Zhang, Y.-W. (2018). Effects of graphene/BN encapsulation, surface functionalization and molecular adsorption on the electronic properties of layered InSe : a first-principles study. Physical Chemistry Chemical Physics, 20(18), 12939-12947. doi:10.1039/c8cp01146j
Journal: Physical Chemistry Chemical Physics
Abstract: By using first-principles calculations, we investigated the effects of graphene/boron nitride (BN) encapsulation, and surface functionalization by metallic elements (K, Al, Mg and typical transition metals) and molecules (tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE)) on the electronic properties of layered indium selenide (InSe). It was found that an opposite trend of charge transfer is possible for graphene (donor) and BN (acceptor), which is dramatically different from phosphorene where both graphene and BN play the same role (donor). For an InSe/BN heterostructure, a change of the interlayer distance due to out-of-plane compression can effectively modulate the band gap. Strong acceptor abilities to InSe were found for the TCNE and TCNQ molecules. For K, Al and Mg-doped monolayer InSe, charge transfer from the K and Al atoms to the InSe surface was observed, causing an n-type conduction of InSe, while p-type conduction of InSe was observed in the case of Mg-doping. The atomically thin structure of InSe enables the possible observation and utilization of the dopant-induced vertical electric field across the interface. A proper adoption of the n- or p-type dopants allows for the modulation of the work function, the Fermi level pinning, the band bending, and the photo-adsorbing efficiency near the InSe surface/interface. Investigation of the adsorption of transition metal atoms on InSe showed that Ti-, V-, Cr-, Mn-, and Co-adsorbed InSe are spin-polarized, while Ni-, Cu-, Pd-, Ag- and Au-adsorbed InSe are non-spin-polarized. Our results shed light on the possible ways to protect InSe structures and modulate their electronic properties for nanoelectronics and electrochemical device applications.
URI: https://hdl.handle.net/10356/142120
ISSN: 1463-9076
DOI: 10.1039/c8cp01146j
Rights: © 2018 the Owner Societies (Published by Royal Society of Chemistry). All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MAE Journal Articles

SCOPUSTM   
Citations 10

17
Updated on Mar 10, 2021

PublonsTM
Citations 10

15
Updated on Mar 9, 2021

Page view(s)

78
Updated on Nov 28, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.