Please use this identifier to cite or link to this item:
Title: Computer-aided diagnosis of glaucoma using fundus images : a review
Authors: Hagiwara, Yuki
Koh, Joel En Wei
Tan, Jen Hong
Bhandary, Sulatha V.
Laude, Augustinus
Ciaccio, Edward J.
Tong, Louis
Acharya, U. Rajendra
Keywords: Science::Medicine
Issue Date: 2018
Source: Hagiwara, Y., Koh, J. E. W., Tan, J. H., Bhandary, S. V., Laude, A., Ciaccio, E. J., . . . Acharya, U. R. (2018). Computer-aided diagnosis of glaucoma using fundus images : a review. Computer methods and programs in biomedicine, 165, 1-12. doi:10.1016/j.cmpb.2018.07.012
Journal: Computer methods and programs in biomedicine
Abstract: Background and objectives: Glaucoma is an eye condition which leads to permanent blindness when the disease progresses to an advanced stage. It occurs due to inappropriate intraocular pressure within the eye, resulting in damage to the optic nerve. Glaucoma does not exhibit any symptoms in its nascent stage and thus, it is important to diagnose early to prevent blindness. Fundus photography is widely used by ophthalmologists to assist in diagnosis of glaucoma and is cost-effective. Methods: The morphological features of the disc that is characteristic of glaucoma are clearly seen in the fundus images. However, manual inspection of the acquired fundus images may be prone to inter-observer variation. Therefore, a computer-aided detection (CAD) system is proposed to make an accurate, reliable and fast diagnosis of glaucoma based on the optic nerve features of fundus imaging. In this paper, we reviewed existing techniques to automatically diagnose glaucoma. Results: The use of CAD is very effective in the diagnosis of glaucoma and can assist the clinicians to alleviate their workload significantly. We have also discussed the advantages of employing state-of-art techniques, including deep learning (DL), when developing the automated system. The DL methods are effective in glaucoma diagnosis. Conclusions:Novel DL algorithms with big data availability are required to develop a reliable CAD system. Such techniques can be employed to diagnose other eye diseases accurately.
ISSN: 0169-2607
DOI: 10.1016/j.cmpb.2018.07.012
Rights: © 2018 Elsevier B.V. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:LKCMedicine Journal Articles

Citations 10

Updated on Mar 10, 2021

Citations 10

Updated on Mar 8, 2021

Page view(s)

Updated on Aug 18, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.