Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/142203
Title: | Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads | Authors: | Lewpiriyawong, Nuttawut Xu, Guolin Yang, Chun |
Keywords: | Engineering::Mechanical engineering | Issue Date: | 2018 | Source: | Lewpiriyawong, N., Xu, G., & Yang, C. (2018). Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads. Electrophoresis, 39(5-6), 878-886. doi:10.1002/elps.201700395 | Journal: | Electrophoresis | Abstract: | This paper presents the use of DC-biased AC electric field for enhancing cell trapping throughput in an insulator-based dielectrophoretic (iDEP) fluidic device with densely packed silica beads. Cell suspension is carried through the iDEP device by a pressure-driven flow. Under an applied DC-biased AC electric field, DEP trapping force is produced as a result of non-uniform electric field induced by the gap of electrically insulating silica beads packed between two mesh electrodes that allow both fluid and cells to pass through. While the AC component is mainly to control the magnitude of DEP trapping force, the DC component generates local electroosmotic (EO) flow in the cavity between the beads and the EO flow can be set to move along or against the main pressure-driven flow. Our experimental and simulation results show that desirable trapping is achieved when the EO flow direction is along (not against) the main flow direction. Using our proposed DC-biased AC field, the device can enhance the trapping throughput (in terms of the flowrate of cell suspension) up to five times while yielding almost the same cell capture rates as compared to the pure AC field case. Additionally, the device was demonstrated to selectively trap dead yeast cells from a mixture of flowing live and dead yeast cells. | URI: | https://hdl.handle.net/10356/142203 | ISSN: | 0173-0835 | DOI: | 10.1002/elps.201700395 | Schools: | School of Mechanical and Aerospace Engineering | Rights: | © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | MAE Journal Articles |
SCOPUSTM
Citations
20
13
Updated on May 1, 2025
Web of ScienceTM
Citations
20
9
Updated on Oct 31, 2023
Page view(s)
269
Updated on May 7, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.