Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/142205
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFu, Yingen_US
dc.contributor.authorZeng, Huanqiangen_US
dc.contributor.authorMa, Linen_US
dc.contributor.authorNi, Zhangkaien_US
dc.contributor.authorZhu, Jianqingen_US
dc.contributor.authorMa, Kai-Kuangen_US
dc.date.accessioned2020-06-17T05:55:23Z-
dc.date.available2020-06-17T05:55:23Z-
dc.date.issued2018-
dc.identifier.citationFu, Y., Zeng, H., Ma, L., Ni, Z., Zhu, J., & Ma, K.-K. (2018). Screen content image quality assessment using multi-scale difference of Gaussian. IEEE Transactions on Circuits and Systems for Video Technology, 28(9), 2428-2432. doi:10.1109/TCSVT.2018.2854176en_US
dc.identifier.issn1051-8215en_US
dc.identifier.urihttps://hdl.handle.net/10356/142205-
dc.description.abstractIn this paper, a novel image quality assessment (IQA) model for the screen content images (SCIs) is proposed by using multi-scale difference of Gaussian (MDOG). Motivated by the observation that the human visual system (HVS) is sensitive to the edges while the image details can be better explored in different scales, the proposed model exploits MDOG to effectively characterize the edge information of the reference and distorted SCIs at two different scales, respectively. Then, the degree of edge similarity is measured in terms of the smaller-scale edge map. Finally, the edge strength computed based on the larger-scale edge map is used as the weighting factor to generate the final SCI quality score. Experimental results have shown that the proposed IQA model for the SCIs produces high consistency with human perception of the SCI quality and outperforms the state-of-the-art quality models.en_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Transactions on Circuits and Systems for Video Technologyen_US
dc.rights© 2018 IEEE. All rights reserved.en_US
dc.subjectEngineering::Electrical and electronic engineeringen_US
dc.titleScreen content image quality assessment using multi-scale difference of Gaussianen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.identifier.doi10.1109/TCSVT.2018.2854176-
dc.identifier.scopus2-s2.0-85049663753-
dc.identifier.issue9en_US
dc.identifier.volume28en_US
dc.identifier.spage2428en_US
dc.identifier.epage2432en_US
dc.subject.keywordsHuman Visual System (HVS)en_US
dc.subject.keywordsImage Quality Assessment (IQA)en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:EEE Journal Articles

SCOPUSTM   
Citations 10

51
Updated on Mar 27, 2023

Web of ScienceTM
Citations 10

44
Updated on Mar 26, 2023

Page view(s)

188
Updated on Mar 31, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.