Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/142263
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJi, Dongxuen_US
dc.contributor.authorWei, Zhongbaoen_US
dc.contributor.authorMazzoni, Stefanoen_US
dc.contributor.authorMengarelli, Marcoen_US
dc.contributor.authorRajoo, Sritharen_US
dc.contributor.authorZhao, Jiyunen_US
dc.contributor.authorPou, Josepen_US
dc.contributor.authorRomagnoli, Alessandroen_US
dc.date.accessioned2020-06-18T03:25:03Z-
dc.date.available2020-06-18T03:25:03Z-
dc.date.issued2018-
dc.identifier.citationJi, D., Wei, Z., Mazzoni, S., Mengarelli, M., Rajoo, S., Zhao, J., . . . Romagnoli, A. (2018). Thermoelectric generation for waste heat recovery : application of a system level design optimization approach via Taguchi method. Energy Conversion and Management, 172, 507-516. doi:10.1016/j.enconman.2018.06.016en_US
dc.identifier.issn0196-8904en_US
dc.identifier.urihttps://hdl.handle.net/10356/142263-
dc.description.abstractThermoelectric generator is a solid-state energy converter which can convert waste heat directly into electricity. During the past decades, thermoelectric materials have been widely investigated whereas the integrated design of thermoelectric generators have been less studied. This paper proposes and implements a framework for the design of thermoelectric generators, consisting of thermoelectric modules and heat exchangers, based on the Taguchi method. As compared with previous researches which optimize the thermoelectric module alone and assume fixed temperature or fixed heat fluxes for the thermoelectric modules, this work proposes a methodology to optimize the thermoelectric module and the heat exchanger together. Five design parameters (namely the height, the fill-ratio, the ratio of cross-sectional area of n-type material over p-type material of thermoelectric module, the length and the material of the heat exchanger) were analyzed for two different applications, waste heat recovery from marine and automotive engines. In order to perform the analysis, a L27 (35) orthogonal array was employed to assess all of the design parameters returning the maximum output power. By analysis of variance, it is found that the thermoelectric module height is the most important design parameter contributing for the 69.6% and 30.25% in automotive and marine application, respectively. And the optimal design parameter set are also determined in both applications.en_US
dc.language.isoenen_US
dc.relation.ispartofEnergy Conversion and Managementen_US
dc.rights© 2018 Elsevier Ltd. All rights reserved.en_US
dc.subjectEngineering::Mechanical engineeringen_US
dc.titleThermoelectric generation for waste heat recovery : application of a system level design optimization approach via Taguchi methoden_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.contributor.researchEnergy Research Institute @ NTU (ERI@N)en_US
dc.identifier.doi10.1016/j.enconman.2018.06.016-
dc.identifier.scopus2-s2.0-85050127081-
dc.identifier.volume172en_US
dc.identifier.spage507en_US
dc.identifier.epage516en_US
dc.subject.keywordsThermoelectric Generatoren_US
dc.subject.keywordsWaste Heat Recoveryen_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:ERI@N Journal Articles

SCOPUSTM   
Citations 10

49
Updated on Mar 26, 2024

Web of ScienceTM
Citations 10

41
Updated on Oct 25, 2023

Page view(s)

414
Updated on Mar 28, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.