Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/142317
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMopuri, Konda Reddyen_US
dc.contributor.authorGarg, Utsaven_US
dc.contributor.authorBabu, R. Venkateshen_US
dc.date.accessioned2020-06-19T03:09:48Z-
dc.date.available2020-06-19T03:09:48Z-
dc.date.issued2018-
dc.identifier.citationMopuri, K. R., Garg, U., & Babu, R. V. (2019). CNN fixations : an unraveling approach to visualize the discriminative image regions. IEEE Transactions on Image Processing, 28(5), 2116-2125. doi:10.1109/TIP.2018.2881920en_US
dc.identifier.issn1057-7149en_US
dc.identifier.urihttps://hdl.handle.net/10356/142317-
dc.description.abstractDeep convolutional neural networks (CNNs) have revolutionized the computer vision research and have seen unprecedented adoption for multiple tasks, such as classification, detection, and caption generation. However, they offer little transparency into their inner workings and are often treated as black boxes that deliver excellent performance. In this paper, we aim at alleviating this opaqueness of CNNs by providing visual explanations for the network's predictions. Our approach can analyze a variety of CNN-based models trained for computer vision applications, such as object recognition and caption generation. Unlike the existing methods, we achieve this via unraveling the forward pass operation. The proposed method exploits feature dependencies across the layer hierarchy and uncovers the discriminative image locations that guide the network's predictions. We name these locations CNN fixations, loosely analogous to human eye fixations. Our approach is a generic method that requires no architectural changes, additional training, or gradient computation, and computes the important image locations (CNN fixations). We demonstrate through a variety of applications that our approach is able to localize the discriminative image locations across different network architectures, diverse vision tasks, and data modalities.en_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Transactions on Image Processingen_US
dc.rights© 2018 IEEE. All rights reserved.en_US
dc.subjectEngineering::Computer science and engineeringen_US
dc.titleCNN fixations : an unraveling approach to visualize the discriminative image regionsen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Computer Science and Engineeringen_US
dc.identifier.doi10.1109/TIP.2018.2881920-
dc.identifier.pmid30452367-
dc.identifier.scopus2-s2.0-85056698918-
dc.identifier.issue5en_US
dc.identifier.volume28en_US
dc.identifier.spage2116en_US
dc.identifier.epage2125en_US
dc.subject.keywordsExplainable AIen_US
dc.subject.keywordsCNN Visualizationen_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SCSE Journal Articles

SCOPUSTM   
Citations 10

33
Updated on Mar 18, 2023

Web of ScienceTM
Citations 10

27
Updated on Mar 20, 2023

Page view(s)

161
Updated on Mar 22, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.