Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/142323
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Yabin | en_US |
dc.contributor.author | Lin, Weisi | en_US |
dc.contributor.author | Li, Qiaohong | en_US |
dc.contributor.author | Cheng, Wentao | en_US |
dc.contributor.author | Zhang, Xinfeng | en_US |
dc.date.accessioned | 2020-06-19T03:50:52Z | - |
dc.date.available | 2020-06-19T03:50:52Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Zhang, Y., Lin, W., Li, Q., Cheng, W., & Zhang, X. (2018). Multiple-level feature-based measure for retargeted image quality. IEEE Transactions on Image Processing, 27(1), 451-463. doi:10.1109/TIP.2017.2761556 | en_US |
dc.identifier.issn | 1057-7149 | en_US |
dc.identifier.uri | https://hdl.handle.net/10356/142323 | - |
dc.description.abstract | Objective image retargeting quality assessment aims to use computational models to predict the retargeted image quality consistent with subjective perception. In this paper, we propose a multiple-level feature (MLF)-based quality measure to predict the perceptual quality of retargeted images. We first provide an in-depth analysis on the low-level aspect ratio similarity feature, and then propose a mid-level edge group similarity feature, to better address the shape/structure related distortion. Furthermore, a high-level face block similarity feature is designed to deal with sensitive region deformation. The multiple-level features are complementary as they quantify different aspects of quality degradation in the retargeted image, and the MLF measure learned by regression is used to predict the perceptual quality of retargeted images. Extensive experimental results performed on two public benchmark databases demonstrate that the proposed MLF measure achieves higher quality prediction accuracy than the existing relevant state-of-the-art quality measures. | en_US |
dc.description.sponsorship | NRF (Natl Research Foundation, S’pore) | en_US |
dc.description.sponsorship | MOE (Min. of Education, S’pore) | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | IEEE Transactions on Image Processing | en_US |
dc.rights | © 2017 IEEE. All rights reserved. | en_US |
dc.subject | Engineering::Computer science and engineering | en_US |
dc.title | Multiple-level feature-based measure for retargeted image quality | en_US |
dc.type | Journal Article | en |
dc.contributor.school | School of Computer Science and Engineering | en_US |
dc.identifier.doi | 10.1109/TIP.2017.2761556 | - |
dc.identifier.pmid | 28991745 | - |
dc.identifier.scopus | 2-s2.0-85038256649 | - |
dc.identifier.issue | 1 | en_US |
dc.identifier.volume | 27 | en_US |
dc.identifier.spage | 451 | en_US |
dc.identifier.epage | 463 | en_US |
dc.subject.keywords | Retargeted Image Quality | en_US |
dc.subject.keywords | Edge Group Similarity | en_US |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
Appears in Collections: | SCSE Journal Articles |
SCOPUSTM
Citations
10
26
Updated on Mar 10, 2021
PublonsTM
Citations
20
15
Updated on Mar 3, 2021
Page view(s)
17
Updated on Apr 16, 2021
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.