Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/142377
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Jing | en_US |
dc.contributor.author | Li, Huiyuan | en_US |
dc.contributor.author | Wang, Li-Lian | en_US |
dc.contributor.author | Zhang, Zhimin | en_US |
dc.date.accessioned | 2020-06-19T08:04:17Z | - |
dc.date.available | 2020-06-19T08:04:17Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Zhang, J., Li, H., Wang, L.-L., & Zhang, Z. (2020). Ball prolate spheroidal wave functions in arbitrary dimensions. Applied and Computational Harmonic Analysis, 48(2), 539-569. doi:10.1016/j.acha.2018.08.001 | en_US |
dc.identifier.issn | 1063-5203 | en_US |
dc.identifier.uri | https://hdl.handle.net/10356/142377 | - |
dc.description.abstract | In this paper, we introduce the prolate spheroidal wave functions (PSWFs) of real order α>−1 on the unit ball in arbitrary dimension, termed as ball PSWFs. They are eigenfunctions of both an integral operator, and a Sturm–Liouville differential operator. Different from existing works on multi-dimensional PSWFs, the ball PSWFs are defined as a generalization of orthogonal ball polynomials in primitive variables with a tuning parameter c>0, through a “perturbation” of the Sturm–Liouville equation of the ball polynomials. From this perspective, we can explore some interesting intrinsic connections between the ball PSWFs and the finite Fourier and Hankel transforms. We provide an efficient and accurate algorithm for computing the ball PSWFs and the associated eigenvalues, and present various numerical results to illustrate the efficiency of the method. Under this uniform framework, we can recover the existing PSWFs by suitable variable substitutions. | en_US |
dc.description.sponsorship | MOE (Min. of Education, S’pore) | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Applied and Computational Harmonic Analysis | en_US |
dc.rights | © 2018 Elsevier Inc. All rights reserved. | en_US |
dc.subject | Science::Mathematics | en_US |
dc.title | Ball prolate spheroidal wave functions in arbitrary dimensions | en_US |
dc.type | Journal Article | en |
dc.contributor.school | School of Physical and Mathematical Sciences | en_US |
dc.identifier.doi | 10.1016/j.acha.2018.08.001 | - |
dc.identifier.scopus | 2-s2.0-85051146712 | - |
dc.identifier.issue | 2 | en_US |
dc.identifier.volume | 48 | en_US |
dc.identifier.spage | 539 | en_US |
dc.identifier.epage | 569 | en_US |
dc.subject.keywords | Generalized Prolate Spheroidal Wave Functions | en_US |
dc.subject.keywords | Arbitrary Unit Ball | en_US |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
Appears in Collections: | SPMS Journal Articles |
SCOPUSTM
Citations
50
3
Updated on Mar 20, 2023
Web of ScienceTM
Citations
50
2
Updated on Mar 21, 2023
Page view(s)
153
Updated on Mar 26, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.