Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/142377
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Jingen_US
dc.contributor.authorLi, Huiyuanen_US
dc.contributor.authorWang, Li-Lianen_US
dc.contributor.authorZhang, Zhiminen_US
dc.date.accessioned2020-06-19T08:04:17Z-
dc.date.available2020-06-19T08:04:17Z-
dc.date.issued2018-
dc.identifier.citationZhang, J., Li, H., Wang, L.-L., & Zhang, Z. (2020). Ball prolate spheroidal wave functions in arbitrary dimensions. Applied and Computational Harmonic Analysis, 48(2), 539-569. doi:10.1016/j.acha.2018.08.001en_US
dc.identifier.issn1063-5203en_US
dc.identifier.urihttps://hdl.handle.net/10356/142377-
dc.description.abstractIn this paper, we introduce the prolate spheroidal wave functions (PSWFs) of real order α>−1 on the unit ball in arbitrary dimension, termed as ball PSWFs. They are eigenfunctions of both an integral operator, and a Sturm–Liouville differential operator. Different from existing works on multi-dimensional PSWFs, the ball PSWFs are defined as a generalization of orthogonal ball polynomials in primitive variables with a tuning parameter c>0, through a “perturbation” of the Sturm–Liouville equation of the ball polynomials. From this perspective, we can explore some interesting intrinsic connections between the ball PSWFs and the finite Fourier and Hankel transforms. We provide an efficient and accurate algorithm for computing the ball PSWFs and the associated eigenvalues, and present various numerical results to illustrate the efficiency of the method. Under this uniform framework, we can recover the existing PSWFs by suitable variable substitutions.en_US
dc.description.sponsorshipMOE (Min. of Education, S’pore)en_US
dc.language.isoenen_US
dc.relation.ispartofApplied and Computational Harmonic Analysisen_US
dc.rights© 2018 Elsevier Inc. All rights reserved.en_US
dc.subjectScience::Mathematicsen_US
dc.titleBall prolate spheroidal wave functions in arbitrary dimensionsen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.identifier.doi10.1016/j.acha.2018.08.001-
dc.identifier.scopus2-s2.0-85051146712-
dc.identifier.issue2en_US
dc.identifier.volume48en_US
dc.identifier.spage539en_US
dc.identifier.epage569en_US
dc.subject.keywordsGeneralized Prolate Spheroidal Wave Functionsen_US
dc.subject.keywordsArbitrary Unit Ballen_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SPMS Journal Articles

SCOPUSTM   
Citations 50

3
Updated on Mar 20, 2023

Web of ScienceTM
Citations 50

2
Updated on Mar 21, 2023

Page view(s)

153
Updated on Mar 26, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.