Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/142507
Title: A calibration-free/DEM-free 8-bit 2.4-GS/s single-core digital-to-analog converter with a distributed biasing scheme
Authors: Juanda
Shu, Wei
Chang, Joseph Sylvester
Keywords: Engineering::Electrical and electronic engineering
Issue Date: 2018
Source: Juanda, Shu, W., & Chang, J. S. (2018). A calibration-free/DEM-free 8-bit 2.4-GS/s single-core digital-to-analog converter with a distributed biasing scheme. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 26(11), 2299-2309. doi:10.1109/TVLSI.2018.2850919
Journal: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Abstract: This paper describes a calibration-free/dynamic-element-matching-free 8-bit 2.4-GS/s single-core current-steering digital-to-analog converter (CS-DAC) featuring an integral nonlinearity of ±0.097 LSB (equivalent to 11-bit accuracy), a differential nonlinearity of 0.15/-0.05 LSB, a spurious-free dynamic range of >47.8 dB across the Nyquist bandwidth of 1.13 GHz, and a power dissipation of 26.4 mW from 1.2-/2-V supplies. These attributes are achieved by our proposed distributed biasing scheme, which largely decouples two critical tradeoffs in the CS-DAC - the tradeoff between the output impedance of the current sources and their current mismatches and that between the current mismatches and the timing errors. To simplify the CS-DAC measurements and hence reduced costs associated with testing during manufacturing, we propose a custom built-in × 2.4-Gb/s digital pattern generator (DPG) featuring low I/O pin count, no high-speed data I/O circuits, and low hardware complexity/size. The proposed 8-bit 2.4-GS/s CS-DAC with the built-in DPG is realized using a commercial 65-nm low-power CMOS process.
URI: https://hdl.handle.net/10356/142507
ISSN: 1063-8210
DOI: 10.1109/TVLSI.2018.2850919
Schools: School of Electrical and Electronic Engineering 
Rights: © 2018 IEEE. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:EEE Journal Articles

SCOPUSTM   
Citations 50

5
Updated on Mar 20, 2025

Web of ScienceTM
Citations 50

4
Updated on Oct 30, 2023

Page view(s)

258
Updated on Mar 20, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.