Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/142560
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Jieen_US
dc.contributor.authorHou, Junhuien_US
dc.contributor.authorChau, Lap-Puien_US
dc.date.accessioned2020-06-24T06:11:56Z-
dc.date.available2020-06-24T06:11:56Z-
dc.date.issued2018-
dc.identifier.citationChen, J., Hou, J., & Chau, L.-P. (2018). Light field denoising via anisotropic parallax analysis in a CNN framework. IEEE Signal Processing Letters, 25(9), 1403-1407. doi:10.1109/LSP.2018.2861212en_US
dc.identifier.issn1070-9908en_US
dc.identifier.urihttps://hdl.handle.net/10356/142560-
dc.description.abstractLight field (LF) cameras provide perspective information of scenes by taking directional measurements of the focusing light rays. The raw outputs are usually dark with additive camera noise, which impedes subsequent processing and applications. We propose a novel LF denoising framework based on anisotropic parallax analysis (APA). Two convolutional neural networks are jointly designed for the task: first, the structural parallax synthesis network predicts the parallax details for the entire LF based on a set of anisotropic parallax features. These novel features can efficiently capture the high-frequency perspective components of a LF from noisy observations. Second, the view-dependent detail compensation network restores non-Lambertian variation to each LF view by involving view-specific spatial energies. Extensive experiments show that the proposed APA LF denoiser provides a much better denoising performance than state-of-the-art methods in terms of visual quality and in preservation of parallax details.en_US
dc.description.sponsorshipNRF (Natl Research Foundation, S’pore)en_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Signal Processing Lettersen_US
dc.rights© 2018 IEEE. All rights reserved.en_US
dc.subjectEngineering::Electrical and electronic engineeringen_US
dc.titleLight field denoising via anisotropic parallax analysis in a CNN frameworken_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.identifier.doi10.1109/LSP.2018.2861212-
dc.identifier.scopus2-s2.0-85050767622-
dc.identifier.issue9en_US
dc.identifier.volume25en_US
dc.identifier.spage1403en_US
dc.identifier.epage1407en_US
dc.subject.keywordsAnisotropic Parallax Featureen_US
dc.subject.keywordsConvolutional Neural Networks (CNN)en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:EEE Journal Articles

SCOPUSTM   
Citations 10

50
Updated on Apr 26, 2025

Web of ScienceTM
Citations 10

30
Updated on Oct 28, 2023

Page view(s)

286
Updated on Apr 28, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.