Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/142593
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Yinglien_US
dc.contributor.authorZhou, Kunen_US
dc.contributor.authorTan, Pengfeien_US
dc.contributor.authorTor, Shu Bengen_US
dc.contributor.authorChua, Chee Kaien_US
dc.contributor.authorLeong, Kah Faien_US
dc.date.accessioned2020-06-25T03:29:15Z-
dc.date.available2020-06-25T03:29:15Z-
dc.date.issued2018-
dc.identifier.citationLi, Y., Zhou, K., Tan, P., Tor, S. B., Chua, C. K., & Leong, K. F. (2018). Modeling temperature and residual stress fields in selective laser melting. International Journal of Mechanical Sciences, 136, 24-35. doi:10.1016/j.ijmecsci.2017.12.001en_US
dc.identifier.issn0020-7403en_US
dc.identifier.urihttps://hdl.handle.net/10356/142593-
dc.description.abstractThe paper investigates the temperature and residual stress fields in the selective laser melting (SLM) process. A three-dimensional thermo-mechanical coupling model is developed to simulate a multi-track multi-layer SLM process using the finite element method. The model considers the temperature-dependent material properties which consist of thermal conductivity, density, enthalpy, yield stress, thermal expansion coefficient and Young's modulus. The simulated process includes the heating, melting, vaporization, solidification, shrinkage and cooling phenomena in the powder bed. The SLM scanning laser beam can be described as a moving volumetric heat source that is able to penetrate through the powder layers. The modeling results show that the residual stress component of the built part in the direction of the layer height increases with the number of the printed layers. It is found that at a given point, the residual stress component in the scanning direction is generally larger than the other two components, and the maximum von Mises stress occurs in the middle plane of the printed part. The temperature evolution and residual stress distribution predicted by the model can serve to provide guidance for SLM process parameter optimization.en_US
dc.description.sponsorshipNRF (Natl Research Foundation, S’pore)en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Mechanical Sciencesen_US
dc.rights© 2017 Elsevier Ltd. All rights reserved.en_US
dc.subjectEngineering::Mechanical engineeringen_US
dc.titleModeling temperature and residual stress fields in selective laser meltingen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.contributor.researchSingapore Centre for 3D Printingen_US
dc.identifier.doi10.1016/j.ijmecsci.2017.12.001-
dc.identifier.scopus2-s2.0-85038008616-
dc.identifier.volume136en_US
dc.identifier.spage24en_US
dc.identifier.epage35en_US
dc.subject.keywords3D Printingen_US
dc.subject.keywordsSelective Laser Meltingen_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SC3DP Journal Articles

SCOPUSTM   
Citations 1

234
Updated on Aug 31, 2024

Web of ScienceTM
Citations 5

174
Updated on Oct 28, 2023

Page view(s)

336
Updated on Sep 6, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.