Please use this identifier to cite or link to this item:
Title: A balanced fuzzy Cultural Algorithm with a modified Levy flight search for real parameter optimization
Authors: Mostafa Z. Ali
Noor H. Awad
Reynolds, Robert G.
Suganthan, Ponnuthurai Nagaratnam
Keywords: Engineering::Electrical and electronic engineering
Issue Date: 2018
Source: Mostafa Z. Ali., Noor H. Awad., Reynolds, R. G., & Suganthan, P. N. (2018). A balanced fuzzy Cultural Algorithm with a modified Levy flight search for real parameter optimization. Information Sciences, 447, 12-35. doi:10.1016/j.ins.2018.03.008
Journal: Information Sciences
Abstract: Over the last few decades, a plethora of improved evolutionary algorithms was developed with exquisite performance on numerical and real-world problems. Among such algorithms, the Cultural Algorithm is a hyper-heuristic evolutionary algorithm, which explicitly utilizes the knowledge represented in the belief space as an essential component to guide the evolutionary search. In this paper, a new enhanced Cultural Algorithm incorporates a fuzzy system with a modified Levy flight search that is introduced as a new component. The new algorithm namely, b-fCA+mLF, utilizes a balanced search mode using a customized belief space with a quality function to harmonize how the knowledge sources work in parallel. The communication protocols between the population space and the belief space are established through the modified fuzzy acceptance and influence functions. Using these new functions, the best individuals are selected to create new knowledge in an effective manner. Similarly, the best knowledge is selected to evolve the individuals in the population space and guide the evolutionary search towards the promising regions. A modified Levy flight search is proposed and utilizes the information from the belief space as an input to support the evolution process to generate better solutions. The algorithm is tested on the benchmark suite taken from the IEEE-CEC’15 competition on learning-based real-parameter single objective optimization, and is compared with other algorithms including the best performer algorithms in this competition. The results suggest that the proposed algorithm is statistically better and is able to produce higher quality solutions than the other state-of-the-art algorithms. A case study on the well-known 120-bar dome truss design problem is also presented to test the validity of the proposed algorithm for the solution of complex design problems. The results of this problem show the ability of the proposed algorithm to generate good solutions with fewer function evaluations, compared to reported results in the literature and other well-known algorithms.
ISSN: 0020-0255
DOI: 10.1016/j.ins.2018.03.008
Rights: © 2018 Elsevier Inc. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:EEE Journal Articles

Citations 10

Updated on Mar 10, 2021

Citations 10

Updated on Mar 7, 2021

Page view(s)

Updated on Nov 28, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.