Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/142955
Title: Constructions of maximally recoverable Local Reconstruction Codes via function fields
Authors: Guruswami, Venkatesan
Jin, Lingfei
Xing, Chaoping
Keywords: Science::Physics
Issue Date: 2019
Source: Guruswami, V., Jin, L., & Xing, C. (2019). Constructions of maximally recoverable Local Reconstruction Codes via function fields. Leibniz International Proceedings in Informatics, 132, 68:1-68:14. doi:10.4230/LIPIcs.ICALP.2019.68
Journal: Leibniz International Proceedings in Informatics 
Abstract: Local Reconstruction Codes (LRCs) allow for recovery from a small number of erasures in a local manner based on just a few other codeword symbols. They have emerged as the codes of choice for large scale distributed storage systems due to the very efficient repair of failed storage nodes in the typical scenario of a single or few nodes failing, while also offering fault tolerance against worst-case scenarios with more erasures. A maximally recoverable (MR) LRC offers the best possible blend of such local and global fault tolerance, guaranteeing recovery from all erasure patterns which are information-theoretically correctable given the presence of local recovery groups. In an (n, r, h, a)-LRC, the n codeword symbols are partitioned into r disjoint groups each of which include a local parity checks capable of locally correcting a erasures. The codeword symbols further obey h heavy (global) parity checks. Such a code is maximally recoverable if it can correct all patterns of a erasures per local group plus up to h additional erasures anywhere in the codeword. This property amounts to linear independence of all such subsets of columns of the parity check matrix. MR LRCs have received much attention recently, with many explicit constructions covering different regimes of parameters. Unfortunately, all known constructions require a large field size that is exponential in h or a, and it is of interest to obtain MR LRCs of minimal possible field size. In this work, we develop an approach based on function fields to construct MR LRCs. Our method recovers, and in most parameter regimes improves, the field size of previous approaches. For instance, for the case of small r ε log n and large h > Ω(n1−ε), we improve the field size from roughly nh to nεh. For the case of a = 1 (one local parity check), we improve the field size quadratically from rh(h+1) to rhb(h+1)/2c for some range of r. The improvements are modest, but more importantly are obtained in a unified manner via a promising new idea.
URI: https://hdl.handle.net/10356/142955
ISBN: 9783959771092
ISSN: 1868-8969
DOI: 10.4230/LIPIcs.ICALP.2019.68
Rights: © 2019 Graham Cormode, Jacques Dark, and Christian Konrad; licensed under Creative Commons License CC-BY.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Journal Articles

Files in This Item:
File Description SizeFormat 
Constructions of Maximally Recoverable Local Reconstruction Codes via Function Fields.pdf508.96 kBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 50

2
Updated on Mar 24, 2023

Page view(s)

187
Updated on Mar 24, 2023

Download(s) 50

48
Updated on Mar 24, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.